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A stiff,* operator-split projection scheme is constructed for the simulation of un-
steady two-dimensional reacting flow with detailed kinetics. The scheme is based on
the compressible conservation equations for an ideal gas mixture in the zero-Mach-
number limit. The equations of motion are spatially discretized using second-order
centered differences and are advanced in time using a new stiff predictor—correc-
tor approach. The new scheme is a modified version of the additive, stiff scheme
introduced in a previous effort by H. N. Najm, P. S. Wyckoff, and O. M. Knio
(1998,J. Comput. Physl43 381). The predictor updates the scalar fields using a
Strang-type operator-split integration step which combines several explicit diffusion
sub-steps with a single stiff step for the reaction terms, such that the global time
step may significantly exceed the critical diffusion stability limit. Convection terms
are explicitly handled using a second-order multi-step scheme. The velocity field is
advanced using a projection scheme which consists of a partial convection—diffusion
update followed by a pressure correction step. A split approach is also adopted for
the convection—diffusion step in the momentum update. This splitting combines an
explicit treatment of the convective terms at the global time step with several explicit
fractional steps for diffusion. Finally, a corrector step is implemented in order to cou-
ple the evolution of the density and velocity fields and to stabilize the computations.
The corrector acts only on the convective terms and the pressure field, while the
predicted updates due to diffusion and reaction are left unchanged. The correction of
the scalar fields is implemented using a single-step non-split, non-stiff, second-order
time integration. A similar procedure is used for the velocity field, which is followed
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by a pressure projection step. The performance and behavior of the operator-split
scheme are first analyzed based on tests for a nonlinear reaction—diffusion equation
in one space dimension, followed by computations with a detail€3 @ ethane—air
mechanism in one and two dimensions. The tests are used to verify that the scheme
is effectively second order in time, and to suggest guidelines for selecting integration
parameters, including the number of fractional diffusion steps and tolerance levels
in the stiff integration. For two-dimensional simulations with the present reaction
mechanism, flame conditions, and resolution parameters, speedup factors of about
5 are achieved over the previous additive scheme, and about 25 over the original
explicit scheme. © 1999 Academic Press

Key Wordsimplicit; stiff; operator splitting; chemistry; reacting; flow; projection.

1. INTRODUCTION

The modeling of chemically reacting flow presents pronounced difficulties associc
with the inherently large ranges of spatial and temporal scales involved, the corresp
ing resolution requirements, and the stiffness of the governing differential equations. :
governing equations [1, 2] arise in diverse applications, including chemically reacting fl
energetic materials, electrical circuits, atmospheric modeling, and biological system:
general, these stiff systems present significant challenges to computational simulat
typically manifested in very small time step size restrictions.

The manifestation and symptoms of stiffness obviously depend on the nature of
application. In this work, we focus on the numerical simulation of unsteady two-dimensic
(2D) flow of a premixed reacting hydrocarbon mixture with detailed chemical kinetics. T
manifestation of stiffness in this application is discussed below in light of an illustrat
example of a methane—air flame at atmospheric pressure. In addition to the wide disf
between various chemical time scales, the flame has a fine spatial structure, requir
computational cell size of 16m or less for adequate resolution. For this spatial resolutic
level, the critical H-atom diffusion stability limit for an explicit second-order Runge—Kut
(RK2) scheme in 2D is around 20 ns. Depending on the particular chemical mechan
the time step limitation due to reaction rate stiffness may be below or above this value
have found that explicit time integration of;C; kinetics (GRImech1.2 [3]) necessitates
a time step smaller than 2 ns [4] for this flame, while the integration of a “skeletal”
mechanism [5] is possible with the 20 ns diffusion-limited time step. Thus as the comple
of the reaction mechanism increases, the temporal stiffness associated with chemical s
terms can become significantly more pronounced.

Stiffness limitations are typically overcome by adopting a stiff-integration scheme c
specially tailored integration method. A variety of approaches have been used to cons
different classes of stiff solvers. A well-known approach is to rely on backward-differer
formulas (BDFs) [6]; these have been used as a basis for several stiff ODE integre
packages, including GEAR [7, 8], GEARB [9], LSODE [10, 11], and VODE [12]. Althoug
widespread, the use of BDFs is by no means the only possible, or necessarily most sui
approach. A variety of alternatives have also been proposed. Examples include imj
or semi-implicit Runge—Kutta schemes (e.g., [13-15]), higher-order Taylor methods (¢
[16]), as well as specialized methods that are based on segregation of “fast” and “s
variables (e.g., [17-24]).
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The selection of a suitable stiff time-integration approach should be carefully perform
and must account for the nature of the problem and the properties of the associated
For the currently targeted detailed kinetics computations a key factor is the complexity o
chemical mechanism, which may involve large numbers of species and elementary rea
steps. Consequently, evaluation of chemical source terms is computationally expensive
is relevant for the choice of stiff time-integration scheme which must enable accurate c
putations with large, stable time stepighoutrequiring an excessive number of functiona
iterations. This feature has, in many situations involving stiff chemical reactions, favo
the selection of a BDF-based integration approach [25-27, 23, 28], and, when pos:s
motivated the incorporation of specialized nonlinear equation solvers (e.g., [29-31]). F
more detailed discussion, see [25, 4].

It should be emphasized, however, that incorporation of a stiff solver into a reac
flow code is not straightforward, in large part because of the coupling between the rea
term and the diffusion and convective transport terms. The presence of convective ti
is generally not problematic, since the selection of convective CFL numbers [32, 33] \
below unity is desirable anyway, in order to maintain small phase errors [34]. Thus,
explicittreatment of convective termsis in most cases suitable. The treatment of the diffu
term, on the other hand, is a more delicate issue. On the one hand, an implicit treat
of diffusion would be desirable in order to overcome the stability restriction of an expli
solver. However, unless the diffusion coefficients are assumed constant, their depender
the temperature (and possibly species concentrations) couples the diffusion terms in &
scalar evolution equations. In two and three dimensions, this leads to a very large syste
coupled nonlinear equations, whose solution would require large memory capacities, inv
large communication costs on parallel machines, and may necessitate the implemen
of specialized nonlinear equation solvers.

The above considerations suggest that “hybrid” implicit—explicit IMEX) approaches,
which individual terms in the governing equations are integrated using specialized sche
may be particularly advantageous. These non-split schemes have been used extensi
the literature, e.g., [35—42]. Different versions have been studied and compared ag
each other [43, 38, 40, 36, 41, 42, 44]. Our previous work [4] featured the construc
and implementation of a semi-implicit, additive, stiff scheme for the simulation of Z
reacting flow with detailed kinetics. The numerical formulation in [4] uses a predictc
corrector methodology; the predictor uses an explicit linear multi-step method while
corrector incorporates a stiff ODE method for the treatment of chemical source terms.
scheme was applied to the simulation of premixed methane-air flames [45]. The c
putations have shown that the scheme efficiently overcomes the chemical stiffness c
equations of motion and results in significant speedup over its explicit predecessor. F
ever, since the diffusion terms are handled explicitly in [4], the time step could not
increased beyond the diffusion stability limit. The objective of the present effort is to ¢
plore a new construction which overcomes this limitation and leads to further CPU-time
ings.

To this end, we have initially considered the implementation of a fully implicit diffusio
solver, a directional splitting technique, and an operator-splitting method. Due in large
to the computational difficulties discussed above, the last approach was adopted. Stz
from the previous construction in [4], we seek to overcome the diffusive stiffness of
equations by integrating the diffusion terms in several fractional steps, such that the gl
time step can be significantly larger than the diffusion stability limit. This approach appe
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to be well suited to simulations of stiff detailed kinetics, since the CPU time is domina
by the evaluation of reaction source terms.

The utility of operator-splitting techniques derives from the advantage of the seqt
tial application of individual operators. Thus, the integration procedure over each ¢
time step can be optimized for individual operators independently, and computatic
efficiency can be consequently enhanced. Operator-splitting techniques have been w
utilized in atmospheric modeling studies [46—48, 37, 49, 40, 50, 51] to decouple re
tion from diffusion and convection terms, diffusion plus reaction from convection, a
to decouple operators in different spatial dimensions. Emphasis has been placed ¢
stability of different operator-splitting schemes [46, 52, 53] and the role of stiffness
stability [54]. The identification and control of splitting errors has been a common sub
of investigation [46, 47, 37, 49, 55, 51]. To date, the symmetric Strang [56] splitting :
proach for achieving second-order accuracy has been most commonly and succes
used. Higher-order splitting approaches have been reported [57, 46, 58, 52], but
generally been found to exhibit considerable stability-related problems due to neg:s
time stepping (the stability of operator-split schemes has been discussed in [46, 52,
Operator-split schemes have been compared against IMEX [37, 40] and other opel
splitting approaches [50, 51]. Sub-stepping (sub-cycling) has been used both in the
stiff reaction term integration and in the integration of the diffusion or convection terms [
37, 51]. Note that the application of stiff integrators in the context of an operator-split ¢
struction requires particular attention to the resulting transients [50] in the stiff integrat
procedure and the consequences of restarting the stiff ODE integrator [48, 40] at each
step.

There is some computational evidence concerning the behavior and performanc
operator-split schemes for flames [59, 60], and some focus on the role of stiff integre
therein [28]. For instance, the splitting can result in a globally first-order scheme [59, :
which raises questions regarding the accuracy of the computations. In [60], a Strang
symmetric splitting is used to construct a formally second-order scheme, but the cor
tational tests show that only superlinear convergence is achieved. Thus, it is also ess
that the behavior of stiff operator-split approaches in flames be thoroughly tested and
performance carefully established.

As mentioned earlier, this paper explores the use of operator splitting to enhance
efficiency of simulation of premixed hydrocarbon flames with detailed kinetics. It is
ganized as follows: In Section 2, we provide a brief overview of the governing equati
for zero-Mach-number combustion. In Section 3, we describe an operator-split exten
of our previous stiff scheme from [4]. The essential aspect of the present extensic
the replacement of the explicit predictor with a symmetrically split, stiff solver. In Se
tion 4, the performance of the new predictor is examined based on detailed tests of a
dimensional, nonlinear reaction—diffusion equation. The tests are used to clearly esta
the convergence properties of the scheme and to analyze the effect of splitting par
ters and the tolerances used in the stiff integrator. The full scheme is applied in Secti
to the simulation of premixed methane—air flames in one and two space dimensions.
simulation uses the {£, mechanism GRImech1.2 [3], which involves 32 species and 1
elementary reactions. These tests are used to further examine the results establisl
Section 4 and to investigate the speedup gained in the computations. A discussion ¢
present experiences is provided in Section 6, together with a summary of major con
ions.
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2. FORMULATION

As in [4], a simplified physical model is used that is based on the zero-Mach-num
limit of the compressible conservation equations [61]. In this limit, acoustic waves
ignored and the pressure field is decomposed into a spatially uniform comgyierdand
a hydrodynamic componepix, t) which varies both in space and in time. We assume a 2
open domain, a gas mixture with zero bulk viscosity [62], and a detailed chemical kin
mechanism involvindN species an&k elementary reactions. Soret and Dufour effects [62
are ignored, as well as body forces and radiant heat transfer.

Under the above assumptions, the evolution of the flow field is governed by the m
momentum, energy, and species conservation equations, which are expressed in
dimensional form as

ad
P LV (o) =0 1)
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d(pu)  d(pu?)  A(puv 0 1
(pu) | a(p )+ (p ):——p+—c1>x @
ot X ay ax Re
d(pv) | d(pvu) | d(pv?) op 1
=—— 4 3
ot T ax T ay ay T Re™Y )
aT 1 V-QVT) 1 Z-VT wr
— 4V.-VT = Da—- 4
ot v RePr pcp * ReSc ¢p * 0oCp @
a(pYi) 1
= -V. Y ——V - (pDin VY, Dawj 5
aT (pv ')+ReSc (0o Din i) + Daw;, (5)

respectively. Here is the densityT is the temperature,= (u, v) is the velocity vectory;
is the mass fraction of speciesu is the dynamic viscosity, is the thermal conductivity,
Cp is the mixture specific heaty; is the chemical production rate of spedigst is rate of
chemical heatrelease, Re, Pr, Sc, and Da are the Reynolds, Prandtl, Schmidt, antdiBam
numbers, respectively, whilé,,®y are the viscous stress terms.

The mixture is assumed to obey the perfect gas law, with individual species molec
weights, specific heats, and enthalpies of formation. The equation of state is expresse

Po=pT/W, (6)

whereW = 1/(ZiN=1Yi /W) is the local effective molar mass of the mixture, aiidis the
molecular weight of specias Note that for an open domak, is constant, whilep varies
in space and time [4]. The specific heat of the mixture is given by

N
i=1

wherecp; is the specific heat of thigh species at constant pressure.

The Nth species, here N\is assumed dominant such that the diffusion velocity of ar
other species=£ N in the mixture is approximated by; = —DjyVY;/Y;, whereDjy is
the binary mass diffusion coefficient of specigato the Nth species at the mixture local
temperature and stagnation pressig. is found from the identityzi'\'zlYi Vi =0 [63].
Similarly, the mass fractiolYy is obtained from the identitEiN:lYi =1. Meanwhile,Z
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is defined byZ = ZiNzlcp,i Din VYi. Note that the above approximation @f assumes
thaty; <« Yn,i=1,...,N—1,i.e., that speciegs=1, ..., N — 1 are traces in speciés.
Finally, for computational efficiency, the mixture transport properties.j are set to those
of the dominant species at the local temperature.

The production rate for each specieg)is given by the sum of contributions of ele-
mentary reactions [63], with Arrhenius ratgs= A, T>*e B/RT k=1, ..., K. The overall
progress of an elementary reaction accounts for both forward and backward rates, cc
tions for third body efficiencies, and pressure dependence [64]. The heat release te
given by

N
wT=—Zhiwi, (8)
i—1

whereh; =hP + fTT Cp,i dT is the enthalpy of specids and the superscrift is used to
denote known reference conditions.

Finally, for the purpose of the numerical implementation described below, the time |
of change of density is found by differentiating the equation of state,

N
ap 19T =L 19,
Pop( =S —wy =), 9
at p( Toat =W m) ®)

and substituting fof T /dt andaY; /at from Egs. (4) and (5), respectively.

3. NUMERICAL SCHEME

As mentioned in the Introduction, the primary objective of the present effort is to expl
an operator-split formulation of the semi-implicit stiff scheme developed in [4]. To tt
end, we start with a brief summary of the non-split scheme and then outline the pre
modification.

In both cases, we rely on a projection scheme for variable-density reacting flow.
projection scheme was originally developed by Chorin [65] for the incompressible Navi
Stokes equations. Recently, several variants have been proposed for variable-density
[66, 67] and reacting flows (e.g., [68—71]). The present formulation is adapted from
previous effort in [4]. We focus on an open 2D domain and rely on a second-order cent
finite-difference discretization of the equations of motion. Field variables are discreti
using a staggered grid with uniform cell size along each coordinate direction. Velo
components are specified at cell edges, while scalar variables are specified at cell cel

3.1. Predictor—Corrector Stiff Scheme

The stiff projection scheme from [4] is based on a predictor—corrector integration
proach. The predictor uses the explicit, second-order Adams—Bashforth (AB2) schen
advance the velocity and scalar fields, and incorporates a pressure correction step in
to satisfy conservation of mass. The pressure correction step involves the inversion
pressure Poisson equation, which is performed using an FFT solver. The corrector, o
other hand, is a mixed, non-split (additive) scheme which combines stiff integratior
reaction source terms with second-order Runge—Kutta (RK2) treatment of the remai
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terms. The stiff integrator is adapted from the DVODE package [12] and used in the spe

equations.
For notational convenience and clarity of the presentation, we first rewrite the spe

density, and momentum evolution equations as

A(pY,
(gtl)ZLiECi-i-Ri-FDi (10)

)

a—f=cp+Rp+Dp+Gp (11)
a(pVv

(a’; ) N(p,V) + F(r,v) — Vp, (12)

whereN(p, V) is the momentum convection terf(u, v) is the viscous force term, while
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Using these definitions, the non-split stiff scheme is summarized as follows.

3.1.1. Explicit Predictor

N1. Based on the known solution at time levglthe source terms in the species an
density evolution equations, namely the fields C", R", D/", C}, R}, D}, andG}, are
evaluated.

N2. Predicted values of the densigy, Species concentration, i =1,..., N — 1, are
determined using the AB2 scheme and predicted values of the temperature are obt

from the equation of state. Thus, we use

5—p" 3 1
P Atp = E(C;j + R+ D) +G)) — E(Cg‘l +RTT+ DT+ G (13)
5Yi — p"Y" 3 1
% =5(CT+ R+ D) = S(CM + R+ D) (14)
Fo W (15)
P

N3. An intermediate velocity fields, is then determined by integrating the pressure-sp
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momentum equations [72],

oV — pMv"

3 1
& =N - E(N“’l +F"h. (16)

N4. The intermediate hydrodynamic pressure field is determined by inverting the pres
Poisson equation [68],

1 "
V2P = At[ (p )+§ } (17)

wheredp/dt|* is given by the second-order discretization [71]

ap |*
ot

_m(?’p— o™+ " h. (18)

N5. Finally, the predicted velocity fieldd is obtained using the projection step

AV —pv
At

- —Vp. (19)

3.1.2. stiff, Non-split Corrector

N6. Corrected values for the scalar fields are obtained using a mixed (non-split) sche
which combines a stiff treatment of reaction source terms and RK2 treatment of the ren
ing terms. The problem is formally writtelgcally at each cell center, as a coupled systel
of N nonlinear evolution equations having the form

a(pY, 1 1 o~ a o~
O8) = 2[Cr+ 0] + 3G (5.9. Y0 + DG T. Wl + R, TV (20)
oo 1., ~ 1. o 1 o s
3t = 5[C0 + Co(B, %, D] + 5[D] + Do (5, T, V)] = S[0"Chy + 5Cw] + R(p, T, Y),
(21)
wherepY = (pY1, pYa, ..., pYn_1) is the reduced local vector of mass concentrations,
1o~ =V (oVY) — “(PYiVi) + ViV - (pv)
C = - ReSC 22
WX W (22)
and
1 _ N Dawj
R(p,T,Y) = ———Dawt — W ! 23
(0. T.Y) =~ Dawr ; W (23)

The coupled system (20)—(21) is integrated locally ftgrto t,; using DVODE [12]. The
initial conditions correspond to the scalar values at time lgyednd the integrations are
performed independently at the cell centers where the scalar fields are defined.

N7. An intermediate velocity fielél is obtained from the pressure-split momentum equi
tions

pn+1\7 — VN

3 1
N = é(N“ +F" — E(N”’l +F" Y, (24)
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This velocity distribution is then corrected using the projection step
n+lyn+l _

At

n+l\7

p — _Vp. (25)

0

p is the solution of the pressure Poisson equation

5 1 ap Hok
Vp=—|V- (") + | |, 26
o= |7 om0+ 5 | (26)
where
ap |™* 1 B
3t = m(‘?’pn+l —4p" — p" 1)' (27)

3.1.3. Remarks

1. Performance. The performance of the above additive, semi-implicit stiff scheme w
analyzed in detail in our previous work [4]. One- and two-dimensional unsteady tests
shown that the stiff construction efficiently accommodates stiff reactions. In particular,
scheme enables large and stable time steps, achieves second-order convergence in tir
leads to substantial speedup of the computations.

2. Density ratio. The predictor—corrector scheme used above is adapted from the c
servative formulation of the compressible zero-Mach-number scheme proposed in [7:
is indicated in [74] that the corrector enhances the coupling between density, velocity,
hydrodynamic pressure fields and, consequently, the stability of the computations. V
out the corrector stage, the computations become unstable when the ratio of maximt
minimum density is roughly larger than 2. When the corrector is used, stable computat
have been performed with density ratios as large as 10.

3. Stability. The stiff scheme has been applied extensively to simplified model tests
also in large-scale simulations (e.g., [45, 75]). For the methane—air mechanisms consid
the computations have shown that the time step is restricted by the stability limit associ
with the explicit treatment of the diffusion term. This limitation is especially stringel
for the present premixed flame simulations which are characterized by a very thin fl
structure, leading to fine mesh resolution. Since the stiff integration of the kinetic rate te
could be performed with time steps larger than the critical diffusion limit, it appears tl
the efficiency of the integration approach can be further increased if this limitation car
overcome or avoided. This possibility, together with our earlier observation that the CI
time cost is dominated by the kinetic rate evaluations, motivates the development of
splitting approach below.

4. Split-scheme stability.We note that the straightforward application of AB2 or RK2 t
the explicittime integration of the isolated scalar diffusion equation leads to time-integra
stability viscous-CFL restrictions of, . = 1/2"! and /2", respectively, where is the
number of space dimensions. However, the above formulation, involving the coupled Al
RK2 construction, was empirically found to exhibit the RK2 restriction ("[4]. Evi-
dently, overall stability is governed more by the stability of the corrector step. As we sl
see below, the situation is different when AB2 diffusion sub-steps are implemented in
operator-split construction. The critical viscous-CFL number is found to approach tha
AB2 as the number of AB2 sub-steps increases.
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5. Treatment of convective termsAs noted in the Introduction, adequate representatic
of the flame structure of an atmospheric methane—air flame with GRImech1.2 requires
sizes of 16.m or smaller. At this resolution, there are about 43 grid points within the flar
thermal width of the stoichiometric (20%,Mliluted) flame considered here. Given the
present flow, with characteristic velocities of 2 m/s, we find a corresponding maximum
Reynolds number of 2.3. In fact, we find both the split and non-split schemes to be st
for cell Reynolds numbers as large as 25. Thus, for the present low-speed flow, the u
a centered convection scheme is quite suitable, and incorporation of upwind discretiz:
is not essential.

3.2. Split, Stiff Scheme

The splitscheme is based on symmetric Strang splitting of the diffusion and reaction c
ators, where two half-time-step integrations of the diffusion term are separated by a full-ti
step integration of the reaction term. Moreover, each diffusjdhsitep is integrated using
several fractional sub-steps, thereby allowing the use of alarge global time step, several
larger than the critical diffusional time step. Thus, if we denotévbyhe number of frac-
tional diffusion steps in the integration of the scalar fields, win¢ris even, letM’' = M /2
be the number of sub-steps in each scalar diffusjstep, and definat’ = At/M as the
fractional scalar diffusion time step, then the integration of the scalar diffusion and reac
terms (neglecting convection for now) can be symbolically represented as

U™t = DM S DM U, (28)

whereU "*! andU" are discrete solutions at timgs.; andt,,, respectivelyS,; represents
the stiff integration of the reaction source term over a step AizeandD,p represents
a fractional diffusion step of sizat’. This basic formulation is the basis of the detaile
split—stiff scheme construction presented below for the full reacting flow problem.

In order to describe the construction of the complete scheme, we introduce some
ditional definitions. We denote bly the number of fractional diffusion sub-steps in the
integration of the momentum equations, wherenay be even or odd. We also introduce
the fractional viscous momentum sub-st&p’ = At/L. In addition, we decompose the
density source terr®, (Eq. (11)) into convective, reactive, and diffusive parts using

G, =—Cwc—-Cwr—Cwp
X pV - VY,
CW,CEWZ—iI
i=1 Wi
N . 29)
— Dawj (
CW,REWZ
i=1 Wi
N1 o1
Cwp=WD = ——_V- (pDinVY).
£ W Re Sc

Using these definitions, the operator-split scheme is summarized as follows.
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3.2.1. Stiff Predictor

S1 Explicit convection source terms for the speci€$)(and density C?) evolution
equations are evaluated. We rely on the explicit AB2 scheme and set

3 1

cfzéq—icrl (30)
3 n n 1 n—1 n-1
Sﬁ = E(Cp - CWA,C) - E(Cp - CW,C)' (31)

S2 The diffusion term is integrated iM’ fractional steps of size&t’. The first step
is performed using a second-order Runge—Kutta (RK2) scheme, using as starting v:
the known field values at timig. WhenM’ > 1, the followingM’ — 1 fractional steps are
performed using AB2. Each of the fractional steps accounts for half the explicit convec
terms. Thus, the AB2 fractional steps take the form

(PYD)* —(pYD)* 3, 1 5 1
INT = 5D = 5D+ 3G (32)
k+1 k
ot —p 3 1, _ 1
v =30~ Co) — 50 -Chp) 38 (Y
Tk+1 _ POVVk_HL
- pk+1

S3 The reaction source terms are integrated over a full time Atejusing as starting
values the computed scalar fields at the end of the previous step. We also account fo
the explicit convection source terms and symbolically express the integration as

1
(PY)S = (pYi)® = S/A |:Dawi (0, T,Y) + Ecie} dt (34)
t
pSH—,oS:S/ —iDawT—CWR—i-}Se dt (35)
atl CpT ' 27
P WS+1
TSt — ;%l (36)

S4. A convection—diffusion step identical &R2is performed. Specifically, the diffusion
term is integrated iM’ fractional steps of sizat’, and each of these steps accounts fc
half the convection source term. The starting values are the scalar fields computed ¢
end of the previous stef@4results in intermediate values of the scalar fields, denoted
B, Y. 1.

S5. Update the velocity field using the pressure-split momentum equations. The con
tive terms are treated explicitly using the second-order Adams—Bashforth scheme over
time step, while the viscous terms are integrated imactional steps. The first fractional
diffusion step is performed with RK2, using as starting values the known field quanti
att,. The followingL — 1 steps are performed with AB2. The convective source terms
accounted for within the fractional diffusion steps. Thus, the AB2 fractional steps take
form

(V) —(pv)! 3

1
°F | | “F -1 ,,l-1 Ce 37
o = 5P v) = SR v + Gy, (37)



OPERATOR-SPLIT, STIFF SCHEME 439

where

3 1
Cé==-N"— ZN"! 38

is the effective convection source term. The intermediate values of density and visce

are obtained by interpolation between the values based on the predicted scalar field
the known values at,; we set

|
P =p"+ ClA = o (39)
| .
o= (T + LI = (], (40)

The intermediate velocity field=v" resulting from the above fractional step update i
then corrected using the projection step

= —Vp, (41)

wherep is the solution of (17).
Thus, at the end @5, predicted values for both scalar fields, Y, T), and the velocity
field, ¥, are available.

3.2.2. Non-stiff Corrector

While a stiff corrector formulation is possible, as illustrated in the Appendix, it is ir
portant to note that the need for a corrector is dictated by the stability requirements
the variable-density projection scheme [73, 74] and not those of the scalar integratio
particular, the scalar integration in a stiff corrector formulation involves a repetition of 1
RK2/AB2 diffusion steps and the stiff integration of the reaction source terms done in
predictor, albeit with modified convective terms. This suggests that the convective che
in the scalars is the only componentof-"7" and(EVi) — (pY;)" that requires correction.
Based on this observation, a non-stiff corrector is formulated as follows.

S6. Effective convection source terms for species and density evolution equations
re-evaluated using an RK2 approach based on the starting valtjearat the predicted
values fromS5. Thus, we set

1 o~ 1
Cr éci 0, Vv, Yi) + écin (42)

10 .= . e 1
S; = E[Cp(p7vv T) - CW,C(Ioa Vv YI)] + E(CS - C\r)\/’c). (43)

S7. The effective non-convective change in the scalars in the predictor step is evalu:

. 3 1, . _
Ap=p—p"— At {Z(CS - C\r}v’c) — E(CS 1 C\r}vé)] (44)

3

A(pY) = (pYi) — (pY)" — At {ECF - %Ci“} (45)
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S8 The corrected scalar fields are evaluated:

p" = p" + Ap + AtS (46)
(PY)™ = (oYD)" + A(pY)) + AtCY (47)
pOWn+l
1_
T = e (48)

Thus,S8results in the fully updated scalar fielgs™+!, Y"1, Tn+1),

S9 Update the velocity field using the pressure-split momentum equations. The |
cedure is very similar to that i85 except that the intermediate scalar fields are bas
on interpolation between updated value$,at and the starting values &t Thus, in the
corrector the AB2 fractional steps are given by

(W' = (v 3 o 1 e
where
[
pl=p"+ " = 0" (50)
|
ph= (T 4 Ll = (). (51)

The velocity distributior? = v' resulting from the above fractional step update is the

corrected using the projection step
n+lvn+l n+l\7

p — _Vp, (52)

—p
At

wherep is the solution of (26).
S9 completes the integration cycle, as updated values for both the scalar figtds,
Y+l andT"*!, and the velocity fieldy"+1, are available.

4. SIMPLIFIED ANALYSIS

As described above, the present approach relies on multiple fractional times and com
a stiff integrator with linear multi-step and predictor—corrector methods. Consequer
a number of questions immediately arise regarding the construction. For instance,
the overall scheme in fact exhibit the expected second-order convergence? What i
effect of the number of fractional diffusion steps on the accuracy of integration? F
thermore, the stiff-integration procedure in DVODE [12] is based on achieving a desi
accuracy by controlling the vect@= (e;, e, ..., ep) of estimated local errors in the
solutiony = (y1, Y2, ..., Yp). The solver adaptively refines the internal time step and pe
forms nonlinear Newton iterations so that the root-mean-square (rms) norm of the ve
g,09;=e€j/mj, j=1,..., P, fallsbelow1,i.e.,

1P 1/2
<P§j¢> <1 (53)
j=1



OPERATOR-SPLIT, STIFF SCHEME 441

Here,m; =r;ly;|+a;, j=1,..., P, is a vector of weights, while; anda; are user-
defined relative and absolute tolerances forjtthecomponent of the solution, respectively.
Since the accuracy of the stiff integration depends on these tolerances, how should th
selected and what is their effect on the overall behavior of the solution?

Due to the large number of parameters involved, and since repeated unsteady ca
tions with detailed kinetics are computationally expensive, we consider here a simpli
setting that closely mimics the targeted simulations and that enables us to address the
questions in a detailed and efficient fashion.

4.1. Specification of the Simplified Problem

We consider the following family of nonlinear reaction—diffusion equations,

du 9’u 8 ,
— =—+ =Uu°(1-u, —o0 < X < 00, 54
ot ax? 82 ( ) - (54)

with boundary conditionsi(x) — 1 asx — —oo andu(x) — 0 asx — oco. Here,§ > 0

is a freely selected parameter.
It is easy to verify that Eq. (54) admits the family of solutions

ux,t) = %(1—tanh[X;CtD, (55)

wherec=2/§.

In addition, it is natural to interpret the solution (55) as a steady-propagating froni
width § and speed. Clearly, Eq. (54) has a structure similar to that of the scalar equatic
in the system for zero-Mach-number combustion. Together with the availability of ex
solutions, this provides an ideal setting for analyzing the present split, stiff-integrat
approach.

Below, we adapt the scheme of the previous section to the simulation of Eq. (54).
simulations are initialized using the steady solutions given in Eq. (55); i.e., we set

u(x, 0) = % (1 _ tanhm ) . (56)

Solutions are obtained using a finite-difference grid which extends over the intezval
X< Z,Z> 5. Second-order centered differences are used to approximate the diffu:
term. At x=—Z, the Dirichlet conditionu(—Z,t) =1 is used, while a homogeneous
Neumann condition is used at=Z. The domain truncation length is selected large
enough that the solution is essentially independent of Ho#étmd the conditions imposed
at the boundaries of the domain.

In order to analyze the behavior of the split stiff scheme, solutions are also obtained u
a second-order non-split explicit scheme. The non-split scheme uses RK2 time integr
as a startup procedure, and AB2 for subsequent time steps. For the split scheivienth
the time step is naturally restricted by the RK2 diffusion stability limit, with the critic:
time step in 1D,

Atc = —, (57)
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whereAx is the mesh size. Unless otherwise indicated, we will refer toAliibelow to
imply At.(M = 2) of the split scheme in 1D. Note that the corresponding critical time st
for the explicit AB2 scheme in 1D iax?/4.

4.2. Numerical Study

The results of the explicit calculations are compared to solutions obtained using the -
operator-split scheme. As outlined earlier (Eq. (28)), these solutions corivbieeplicit
diffusion sub-steps, each of sizd’ = At/M, with a single stiff stepAt, for the reaction
source term. When comparing the results of split calculations, wetfiand varyM; thus,
the global time stept is varied while the diffusion sub-stept’ is constant. Also, for the
purposes of the analysis, the diffusion sub-step in the split computations coincides witl
global time step of the explicit, non-split computations.

In most cases, we shall focus on a propagating front with widtil. Simulations are
performed on a finite domain witd = 20, with different resolution levelax =2Z/N,
whereN is the total number of sub-intervals. Equation (54) is integrateet0.6144; i.e.,
the front propagates for a distance approximately 1.2 times its own width. At the end of
computations, local errors are computed using the exact solution,

1 Xj — 2tn /8
qn = Uin — Uex(Xi, th) = Uin — E (1 — tanh{i' 5 n/ :|>, (58)
and a global error measure is formed using the dist¢saierm,
1 N2 1/2
_ n : 2
EZ - m ; (Ui - Uex(xl ’ tn)) ] . (59)

4.2.1. Spatial and Temporal Errors

Figure 1 shows the spatial distribution of the error at the end of the computations f
steady front with§ = 1. Plotted are results obtained at three resolution lewls,1000,
2000, and 4000, and different valuesMf The fractional diffusion sub-step is taken a:
half the (RK2) critical diffusion step, i.eAt’ = At./2 = Ax?/4. The stiff integration of the
reaction term uses zero relative tolerance and an absolute tolerance'&fAiBo shown
in Fig. 1 are results obtained with a non-split AB2 scheme wite= Ax?/4. For the cases
of Fig. 1, Table | shows the corresponding rms errors, together with the temporal orde
convergence of the calculations. The latter is obtained by repeating the calculations
decreasing time steps and monitoring the differences between numerical solutions obt
at the same spatial resolution level. This enables us to isolate time discretization error:
consequently determine the temporal order of convergence.

Figure 1 and Table | show that fof = 4000 the spatial error distribution and the rm:
values are essentially independent\f at least in the range considered. Foe= 2000,
the errors remain essentially constant as londvias 32, while for N = 1000 errors are
nearly constant whell < 16. Meanwhile, Table Il shows that f&f = 1000, the rms error
at the final time is essentially independent of the time step, except for slight change:
M = 32 for the largest time step considereéd, = At./2. Combined, the results of Fig. 1
and Tables | and Il lead to the following two observations: (1) The rms errors at
final time are essentially independent of béthand At’, as long as the global time step
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FIG. 1. Spatial distribution of the error between the numerical and exact solutions for the split scheme
different values oM. Results using an explicit non-split AB2 scheme are also plotted. The absolute and rel
tolerances used are 18 and 0, respectively. The computations are performed &éth, Z =20, andN = 1000
(top), N =2000 (middle), andN = 4000 (bottom). The fractional diffusion steg’ =t./2.
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TABLE |
Root-Mean-Square Error and Order of Convergence for Reacting
Front Simulations with § =1,Z =20, andAt’' = At./2

Scheme At x 100 Atx10* rmserrorx10°  Order of convergence
N =100Q Ax=0.04
AB2 — 4 9.9379 1.9994
Split, M =2 4 8 9.9711 1.9929
Split, M =4 4 16 10.025 1.9988
Split, M =8 4 32 10.222 1.9998
Split, M =16 4 64 11.063 1.9999
Split, M =32 4 128 15.111 1.9999
N =2000,Ax=0.02
AB2 — 1 2.4864 1.9998
Split, M =2 1 2 2.4883 1.4347
Split, M =4 1 4 2.4917 1.9208
Split, M =8 1 8 2.5038 1.9925
Split, M =16 1 16 2.5525 1.9986
Split, M =32 1 32 2.7626 1.9997
Split, M =64 1 64 3.7757 1.9999
N =4000,Ax =0.01
AB2 — 0.25 0.62176 1.9999
Split, M =2 0.25 0.50 0.62145 —0.5411
Split, M =4 0.25 1.0 0.62187 0.1183
Split, M =8 0.25 2.0 0.62273 1.3625
Split, M =16 0.25 4.0 0.62576 1.9184
Split, M =32 0.25 8.0 0.63793 1.9926

Note The split scheme uses an absolute tolerance of10

At = MALY’ falls below a well-defined value. This value appears to be weakly depend
on the spatial resolution level. (2) When the global time step is sufficiently small (in 1
sense just described) the rms errors are dominated by the spatial discretization errors
can be appreciated from Table II. Note that the dominant effect of the spatial discretize
error complicates the temporal convergence analysis, which, as mentioned above, rec
that one carefully isolate spatial and temporal errors.

TABLE Il
Root-Mean-Square Errors for Reacting Front Simulations with
6=1,Z=20,andN =1000

Scheme

At = At,/2 At = At./4 At'=At,/8
AB2 (At = At') 9.9379x 10°° 9.9445x 107 9.9461x 10°¢
Split, M =2 9.9711x 10° 9.9527x 107 9.9481x 107
Split, M =4 10025x 10°¢ 9.9662x 107 9.9515x 107
Split, M =8 10222x 10°¢ 10.014x 107 9.9635x 107
Split, M =16 11063x 10°¢ 10.208x 107 10.011x 107
Split, M =32 15111x 107 11.048x 107 10.205x 107

Note The split calculations use an absolute tolerance of*.0
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4.2.2. Convergence Rate

Table | also indicates that the split time integration does achieve second-order
vergence. Second-order convergence is in fact observed in all cases considered, exc
N = 4000, where the global time steyi is very small. (Recall thatin TableAt = M At /2,
and that the critical diffusion stefit. varies asAx?.) Specifically, forN = 4000 the com-
puted order of convergence increases monotonically from a negative vaMe=&t to
approximately 2 aM = 32.

Detailed analysis of the computations reveals that the origin of this phenomenon i
sociated with theelative magnitude of the stiff-integration errors with respect to errol
associated with the fractional integration of the diffusion time step. As mentioned ear
DVODE uses absolute and relative tolerances to control the integration error; for simpli
the present tests use zero relative tolerance and an absolute toleranc&olEanwhile,
in the multi-step methods used to treat the diffusion term, integration errors are proporti
to At’2. Thus, one would expect the global time integration error to behave as the sur
two terms: a constant that depends on the tolerances of the stiff integrator, atid &f) O
contribution due to the integration of the diffusion term. When the selected tolerances
such that the stiff-integration errors are significantly smaller than the expligit @) errors,
one would obviously expect the scheme to exhibit second-order convergence. This is
sistent with the results obtained filr= 1000, forN = 2000 withM > 4, and forN = 4000
whenM > 16. On the other hand, when the stiff-integration errors are comparable with
remaining (second-order) errors, one would expect time convergence tests to yield an
of convergence that is lower than 2. This trend is observed in Table Nfer2000 and
M =2 and forN = 4000 andVl = 8. Finally, when the stiff-integration errors are dominan
the global time-integration error should essentially be independent of diffusion step,
the convergence analysis is expected to yield approximately zero-order convergence
behavior can be seen in Table | filr= 4000 andM < 4.

4.2.3. Stiff-Integration Error Tolerances

In order to further examine the above trends, additional tests were conducted to an;
the effect of the tolerances used in the stiff integrator. A sample of these computat
is provided in Table IIl, which provides rms errors obtained with= 1000 and absolute
tolerances of 10'2 and 10'*%. The results of Table Ill are consistent with our observe
tions above. In particular, they show that increasing the tolerance may lead to a redu
in the computed order of convergence, and that increaBin@nd consequenthat) at
a fixed tolerance level leads to an increase in the computed order of convergence!
is because the stiff-integration errors are controlled by the user-defined tolerance |
while the errors due to splitting and explicit treatment of diffusion vary quadratically w
At. Thus, by fixing the tolerance and increasing the global time step, the relative ma
tude of stiff-integration errors decreases. (One should also note that increasing the
gration interval at a fixed tolerance level places a heavier burden on the stiff integra
which must deliver the same accuracy for a larger integration period.) Another interes
observation in Tables | and Il is that while the tolerance value may have a signific
effect on the computed order of convergence, its effect on the rms error value apr
to be insignificant. In fact, the results clearly show that, for all the tolerances con:
ered, spatial discretization errors remain dominant, as long as the global time step rer
small.
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TABLE 11l
Effect of Absolute Tolerance on rms and Order of
Convergence for Reacting Front Simulations withd = 1,
Z=20,N=1000, andAt’ = At./2

Scheme rms errox10P Order of convergence

Absolute tolerance- 1012

Split, M =2 9.9708 1.9087
Split, M =4 10.025 1.9907
Split, M =8 10.222 1.9983
Split, M =16 11.063 1.9997
Split, M =32 15.111 1.9999
Absolute tolerance- 101*
Split, M =2 9.9680 1.2753
Split, M =4 10.023 1.8961
Split, M =8 10.221 1.9915
Split, M =16 11.063 1.9971
Split, M =32 15.111 1.9994

4.2.4. Splitting Errors

In order to further analyze the performance of the split scheme, tests were also perfo
to determine an approximate criterion for splitting errors to become significant. Intuitive
one would expect splitting errors to remain small as long as the changes during a com
integration step are relatively small. For the present reaction—diffusion problem, areasor
interpretation is that the characteristic diffusion depth during a time &tesanuch smaller
than the width of the front, i.ef,~ /At < a8 with a <« 1.

From Table I, one observes that rms errors are essentially independantasf long
asM <16, i.e.,a~0.04. In order to verify this approximate scaling, computations we
performed for a thin reaction—diffusion front wiéh= 0.5, usingZ = 10 andN = 1000, and
were carried to a final timg = 0.3122; i.e., the ratio of front propagation distance to fron
width is equal to that of the earlier case wétk= 1. The computed errors for different values
of M are reported in Table IV. Note that the thin front runs are performed aith= 104
i.e., theratia/§ for a given value oM is the same in Table | (withl = 1000) and Table IV.

TABLE IV
Root-Mean-Square Error and Order of Convergence
for Reacting Front Simulations with §=0.5,Z=10,N =
1000,Ax=0.02, andAt' =10~

Scheme rms errox10P Order of convergence
Split, M =2 9.9711 1.9929
Split, M =4 10.025 1.9988
Split, M =8 10.222 1.9998
Split, M =16 11.063 1.9999
Split, M =32 15.111 1.9999

Note An absolute tolerance of 1 is used.
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These tables show that the rms errors for the thin and thick fronts are nearly identical.
behavior is consistent with the above intuitive scaling.

These results suggest that, in the present setting, the global time step can be |
approximately omit ~ 16 x 10-452; accordingly the number of fractional diffusion steps
follows M = At/At ~16x 107482/(Ax?/4) = 64 x 10~4(8/ Ax)?. This scaling is only
approximate, as aweak dependence on spatial resolution can be seenin Table I. Nonett
it still suggests that, for a given front width M can be increased as the front resolutio
is increased. Moreover, with the time scale for front propagadign=3/c=§2/2, the
above scaling translates & ~ 0.0032t;, such that the time step is a small fraction of the
physical time scale of the flow.

4.2.5. Summary Remarks

One should note that, since the stiff integration generally dominates the CPU tim
detailed kinetics applications, the selection of appropriate tolerance levels plays a cr
role in the overall efficiency of the calculation. The experiences above provide approxin
but useful guidelines for the selection of both the integration step (or equivalently the nun
of fractional diffusion steps) and the tolerance levels. In particular, the analysis shows

1. When the tolerance level is small, the operator-split, stiff scheme achieves sec
order convergence, as the overall temporal error is dominated by the operator-splitting
explicit error contributions.

2. By increasing the number of fractional diffusion steps, and consequently the glc
time step, the tolerances used in the stiff integrator can be accordingly increased.

3. When the tolerance levels are increased, the computed order of convergence ¢
scheme may start decreasing. One can use this phenomenon as an initial guideline f
selection of an adequate tolerance level, but this approach may yield an overly conser\
estimate. A more suitable approach for the selection of both the number of fractional s
and the tolerance level is to monitor the behavior of the solution error, as the latter is c
dominated by the spatial error.

4. A simple guideline for selecting the number of fractional steps is that the global ti
step should remain significantly smaller than the physical time scales of the problem. It
appears that this initial guess can be made independently of the selected spatial resc
level.

4.3. Alternative Splitting Procedures

We conclude this section with a brief discussion of two variants of the above splitt
procedure, as applied to the present simplified problem. In the first variant, the splittin
performed in an alternating fashion, wiM fractional diffusion steps followed by a stiff
fractional reaction step at odd time steps and a stiff fractional reaction step followdd b
fractional diffusion steps at even time steps. Following the notation above, this alterne
scheme is represented as

(60)

gnit DN SaU", neven
| SaPMU",  nodd.

Thus, while the splitting is not symmetric within a single time step, symmetry is maintair
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FIG. 2. Spatial distribution of the error between the numerical and exact solutions for an alternating :
scheme with different values o&fl. Results using an explicit non-split AB2 scheme are also plotted. The absoll
and relative tolerances used arefand 0, respectively. The computations are performed St Z = 20,
andN = 1000. The fractional diffusion stefit’ =t./2.

for a pair of consecutive steps. Accordingly, global second-order time convergence is
expected.

To examine the behavior of the alternating scheme, computational tests were cond
using the same approach followed above. A representative sample of the results is pro
in Fig. 2, which shows the spatial distribution of errors at the end of the calculation fc
front with § = 1. For the same case, rms errors at the end of the calculations are repc
in Table V. Briefly, our experiences with the alternating scheme have been very sin
to those with the symmetric scheme. In particular, the results clearly show that sec
order temporal convergence can in fact be achieved. The general similarity betweel
results of the alternating scheme (Fig. 2 and Table V) and the corresponding results c
symmetric calculations (Fig. 1 and Table I) is also evident. However, one notes that w
the errors in the alternating and symmetric schemes are comparable At Jdhe errors
in the alternating scheme become noticeably higher as the time step increases. A re
observation is that the operator-split results start deviating from the AB2 prediction:

TABLE V
Root-Mean-Square Error and Order of Convergence
for Reacting Front Simulations with §=1,Z=20,N=
1000 Ax=0.04, andAt' =4 x 1074

Scheme rms errox10P Order of convergence
Split, M =2 9.9967 1.9950
Split, M =4 10.104 1.9991
Split, M =8 10.538 1.9998
Split, M =16 12.352 1.9996
Split, M =32 20.524 1.9987

Note An alternating split scheme with an absolute tolerance o010
is used.
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FIG. 3. Spatial distribution of the error between the numerical and exact solutions for an asymmetric
scheme with different values &fl. Results using an explicit non-split AB2 scheme are also plotted. The absol
and relative tolerances used are#0and 0, respectively. The computations are performed $vithl, Z = 20,
andN = 1000. The fractional diffusion stept’ =t./2.

values ofM in the alternating scheme (Fig. 2) lower than those in the symmetric sche
(Fig. 1). These trends can also be appreciated by comparing the results of Tables | a
especially at higher values aft.

Finally, we consider an asymmetric split scheme in which integration of the diffusi
term is performed first, followed by stiff integration of the reaction term. Thus, the tir
integration is expressed as

untt = S DY un. (61)

The asymmetric scheme is also applied to computing the steady propagation of a
with § =1, and the results are used to analyze the temporal behavior of the computat
Figure 3 shows the spatial distribution of errors at the end of the simulation; the corresp
ing rms error values are reported in Table VI. The results clearly show that the asymm
split scheme is first order in time. In contrast with the results for the symmetric and al
nating schemes, the computations indicate that the (first-order) time-integration erro

TABLE VI
Root-Mean-Square Error and Order of Convergence
for Reacting Front Simulations with §=1,Z=20, N=
1000 Ax=0.04, andAt' =4 x 1074

Scheme rms errax10° Order of convergence
Split, M =2 3.9570 0.9994
Split, M =4 8.0068 0.9990
Split, M=8 16.188 0.9982
Split, M =16 32.557 0.9966
Split, M =32 65.166 0.9933

Note An asymmetric split scheme is used with an absolute tol-
erance of 16",
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FIG. 4. Effect of the fractional diffusion step on the error for an asymmetric split scheme Mith2.
The absolute and relative tolerances used aré®ldhd O, respectively. The computations are performed witl
8=1,Z=20, andN =1000.

the asymmetric scheme are dominant. Furthermore, for the same choice of discretiz
parameters, Tables I, V, and VI show that the rms error in the asymmetric scheme is rou
an order of magnitude larger than the errors in the symmetric and alternating construct

The first-order behavior of the asymmetric computations is also analyzed in Fig. 4
Table VII, whichillustrate the effect of changing the time step at a fixed number of fractio
diffusion stepsM = 2. These computations show that in order to reduce the error of
asymmetric calculations to levels comparable with those obtained with ABZjldthal
time step value must fall significantly below the critical diffusion limit. Consequently,
appears that for the present class of reaction—diffusion problems the asymmetric first-
splitting can only provide computational advantages at the expense of a significant dr
overall accuracy.

It should be emphasized that the above discussion ignores the CPU-time cost of the
integration procedure, and its dependence on the associated step size. Thus, the optimi
of the parameters of the split, stiff scheme should not be simply based on the precisic
the calculations. This aspect will be further discussed in the following section, in the (i
practical) context of a detailed kinetics simulation.

TABLE VI
Effect of Time Step on the rms Error in Reacting Front Simulations
with § =1,Z=20,N =1000, andAx =0.04

Scheme At =t;/2 At =t;/4 At =t./8
Split, M =2 3.9570x 10°° 2.0238x 10°° 1.2186x 10°°
Split, M =4 8.0068x 10~° 3.9570x 10°° 2.023x 10°°
Split, M =8 16.188x 10~° 8.0070x 10°° 3.9570x 10°°
Split, M =16 32.557x 10°° 16.188x 10°° 8.0071x 10°°
Split, M =32 65.166x 10°° 32.557x 10°° 16.188x 10°

Note An asymmetric split scheme with an absolute tolerance of*i6 used.
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5. APPLICATION TO FLAMES WITH DETAILED KINETICS

We now present results for both 1D and 2D flames using stiff detailed kinetics. The
flame results are utilized to further examine the accuracy and convergence of the num
scheme, while the 2D flame serves to demonstrate the capabilities and efficiency o
scheme. We use the GRImech1.2 [3]3z chemical mechanism (32 species and 177 rea
tions) for methane—air combustion, and consider a stoichiometric 208fddted premixed
methane—air flame at atmospheric pressure, with reactants at ambient temperature,
open domain.

5.1. 1D flame

A freely propagating premixed methane—air flame with the above composition and ch
ical mechanism is computed using Chemkin [64, 76] in 1D. This solution is interpola
onto a uniform 1D grid and used to initialize the computations. The initial flame struct
is shown in Fig. 5. The computational domain is 1.6 cm long with inflow and outflc
boundary conditions. Temperature and both reactant and product mole fractions are st
The flame burns to the left into the reactants, which flow from left to right, with an inl
velocity of 19 cm/s at the left boundary, equal to the burning speed. The flow exhibits
initial unsteady phase as the flame structure, position, and reaction rates adjust to the <
grid discretization and transport coefficients used in the present code, which are diffe
from those in Chemkin. The flow evolution is studied to evaluate the numerical schem

5.1.1. Convergence Rate

We begin by examining the empirically observed order of convergence of the sch
in the global time step\t. We look at both self-convergence of the split scheme, and
cross-convergence relative to the original non-split constructidst asreduced. This uses

the rms measures, for any field quantityat a given timegse = 32" — ¢Z'il/'t2||, and

i -spli o
esross— || Pt _ p"OSPIYy ‘The cross-convergence results, shown in Fig. 6, indicate that-
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FIG. 5. One-dimensional stoichiometric 20%, diluted premixed methane—air flame structure. Ambien
temperature reactants are on the left, and hot combustion products are on the right. The GRImech1.2 [3] k
mechanism is used to model flame chemistry. For clarity, intermediate species are not shown.
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FIG.6. Convergence ofthe rmserror between 1D flame solutions with successive global time-step refinerr
att =0.15 ms. The “error” reported here is the difference between the split and non-split scheme results. Abs
and relative error tolerances in the stiff-integration procedure for both schemes &@ntio10, respectively.
The split-scheme results are based\br= 16, andL = 4.

computed solutions with the two schemes converge at a rate that is indeed second or
At. Similarly, the self-convergence of the split scheme is found t6®b&t?).

5.1.2. Splitting Errors

In order to further examine the rms errors, we integrate the 1D flow using a rang
M ={2, 4, 8, 16, 32}, with a fixedAt =50 ns,N =512 cells over the domain length, and
with no viscous momentum splitting. The resulting computed solutions with the split sche
are compared against the non-split results (integrated with the aan@his is done for
DVODE relative tolerance threshold valuesRf=10"°, 10°°, and 108, for all scalars.
We also set the absolute tolerance threshold for each scalar quaniingay = ¢maxR,
wheregmax is the maximum value af (¢ > 0) over the computational domain. The relative
rms error results (hormalized by the maximum value of each field quantity) are show
Fig. 7, using the velocity, temperature, and CH mole fraction fields for illustration. Nc
first the negligible dependence of the errorMnfor all the fields shown. In fact, a small
drop in error with higheM can be observed (for the field, for example), which may be
related to the reduction in th@(At’?) error in the integration of the diffusion terms, as
At’= At/M. Note that the flame thermal thickness i8@D cm, and the burning speed is
19 cml/s, resulting in a flame time scaletef=3.6 ms. ThusAt/t; =0.000014, a very
small fraction. It is not surprising therefore that the splitting errors are negligible, consis
with the simplified analysis in the previous section (small splitting errors have also b
reported in [47]). On the other hand, the figure reveals strong dependence of the err
R for the velocity and temperature fields. Even though the sBniee used for the split
and non-split solutions in each case, the stiff-integration errors do not cancel due tc
differences in the two time-integration schemes. Evidently, these errors are a signifi
component of the overall time-integration errors in this case foptaedT fields, but not
for the CH mole fraction, wher® is seen to have no effect on the error.
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FIG. 7. Root-mean-square error results for the 1D detailed-chemistry flame. The flame is computed
N =512 grid cells on a 1.6 cm domain, with a global time stepbf= 50 ns and the indicated ranges of relative
tolerance threshol® and number of scalar diffusion sub-stéfds No splitting of the viscous momentum terms is
utilized. The error shown is the relative rms difference between the computed fields shown and those compute
the same spatial resolution and time step but with no scalar-diffusion splitting (normalized with the maximum v
of each flow quantity). The error shows little dependence on the number of sub-steps, and significant deper

onR.

Figure 8 illustrates the effect @f, the number of viscous momentum sub-steps, on tl
rms error. For all caseg)\t =50 ns andN =512, as in Fig. 7. On the other hand, we
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now vary At” with L ={2, 4, 8, 16, 32} and use a fixedM =2. The relative rms error is

computed with respect to the non-split case with the same spatial resolution and global
step. As in Fig. 7, we see the minor role of splitting errors relative to the stiff-integrati

errors. This is clear from the effective independence of rms errdr.dihe dependence on
R is evident, however, and is similar to that observed in Fig. 7.
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FIG. 8. Splitting errors and their dependence on the number of viscous momentum sub-sTéps is the

same fixedAt 1D flame case as that in Fig. 7, but with fixétl= 2 andL varying over the range indicated. Here

again, the error shows little dependence on the number of sub-steps, and significant depenéence on
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FIG. 9. Root-mean-square error results for the 1D detailed-chemistry flame. The flame is computed L
N =512 grid cells on a 1.6 cm domain, with a fixed scalar-diffusion sub-stefptof 50 ns, and the indicated
ranges of relative tolerance thresh&®dand number of scalar-diffusion sub-ste@s No splitting of the viscous
momentum terms is utiized. The error shown is the relative rms difference between the computed fields s
and those computed with the same spatial resolution and time step but with no scalar-diffusion splitting.
error shows strong second-order dependence on the number of subddssipse At = MAt'. At low (M, At),
R is found to have a significant effect on the error, as explicit time-integration errors become smaller thar
stiff-integration errors.

5.1.3. Temporal Discretization Errors and Stiff-Integration Tolerances

In Figs. 9 and 10 we allowAt to vary with M, while keepingAt’ fixed, which is a more
realistic situation. In Fig. 9At’ =50 ns is large, such that we observe the second-order r
of the errors (defined with respect to the non-split cas€MasAt) are increased. We also
observe the role of stiff-integration tolerances which degrade the second-order behavi
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FIG. 10. Root-mean-square error results for the 1D detailed-chemistry flame. All conditions are simila
those in Fig. 9, except that a small&t’ =5 ns, and associatetit = M At’, is used here. In the present case,
stiff-integration errors dominate the smalk explicit integration errors. This is evidenced by the observed stron
role of R in modifying the rms error dependence @vi, At).
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the error at lom(M, At), as observed in Section 4. As expected from the model proble
results, these effects are more pronounced in Fig. 10, with a smaller5 ns and associated
smallerAt. The fixed stiff-integration tolerances limit the reduction in error significant
atlow (M, At). Moreover, the uniformly observed second-order convergence rate in Fi
is absent in Fig. 10. Only the CH mole fraction exhibits second-order convergence at |
M, while degrading at smal for the high-R cases. FOR = 108 uniform second-order
convergence is evident in the CH data. Tthéeld convergence rate is seen to be muc
more influenced by the stiff-integration tolerances, with lower error and better converge
observed at lowR and high(M, At). The temperature field, on the other hand, approach
second-order convergence only for tRe= 108 case afow (M, At). We also note, in
reference to the CH anfl data at lom( M, At) in Fig. 10, that the two-orders-of-magnitude
change inR from 1078 to 10°% has a smaller influence on the rms error than the order-c
magnitude change from 18to 10°5. The corresponding changes in thelata are of the
same order. Both observations suggest that the error is more sensitive to the stiff-integr
tolerance at large tolerance values. This makes sense, since the stiff-integration comp
of the rms error is expected to be more significant at l&gk is also consistent with the
similar experience in [42]. This observation is not evident however in Fig. 9, which may
expected since the stiff-integration errors are not dominant in that case.

5.1.4. Spatial Discretization Errors

In Fig. 11, we report rms errors for fixest =5 ns, between split solutions witth =512
grid cells in the 1D domain, and non-split solutions with= 2048 cells. The factor of 4
change inAx results in rms differences between the two computed solutions that inclt
spatial discretization errors. T = 1 data point in the figure corresponds to the non-spl
N =512 solution. The general level of the error in Fig. 11 is higher by roughly two ord
of magnitude than that in Fig. 7, despite the fact that the time step is smaller by a fact
10. This increase is evidently due to the spatial discretization errors, which now see
dominate over the stiff-integration and splitting errors, as there is little observed depend

107 e Rr=10"
= p=10"

A—4AR=10"

" 58— o8 ,
10§ o o oo 8 (g

RMS Error

-5 |
1 10 100
Number of Scalar Diffusion Steps (M)

FIG. 11. Root-mean-square errors corresponding to the ddme512 data in Fig. 7, but as compared to the
non-split solution usindg\N = 2048 albeit with the samat. This comparison brings in the spatial discretization
errors, resulting in the observed general rise in the error as compared to Fig. 7, and the relative insenstfivity
resulting from the dominance of spatial errors over stiff-integration errors.
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FIG. 12. Root-mean-square errors for the 1D detailed-chemistry flame, comparihgt&l2 L =0, M =
{0,2,4,8,16,32}, At'=5 ns case with the fine spatial resolution case ushig=2048 L=0, M =0,
At = At' =5 ns. Thus the rms error involves both spatial and temporal discretization errors, as in Fig. 11
though hereAt is increased wittM. Note the relative insignificance M, At, or R on the amplitude of the error,
which is evidently dominated by spatial errors.

of the error on eitheM or R. This independence d® due to dominance of spatial errors
is consistent with that observed in Section 4 above.

We also examine the spatial errors for fixad’, and variable(M, At). The data of
Fig. 10, withAt’ =5 ns andN =512, are compared to the data of the non-split case wi
N =2048 andAt =5 ns. The dependence of the resulting rms erroMgmAt, andR is
shown in Fig. 12. These results show that the significant dependence of the rms err
Rand(M, At) observed in Fig. 10 is now entirely dominated by the spatial discretizati
errors. Again, this independenceRfs consistent with the observations in Section 4 abov
Onthe other hand, Fig. 12 reveals a slight decrease in the rms err@iMuitht), in contrast
with the model problem results in Tables | and lll. It is useful to recall, however, that t
interpretation of this error measure is complicated by the fact that it is the rms differe
between two fields, each of which has given truncation errors with respect to the e
solution. Thus, the actual dependence of the resulting quantity on Amnjt#, L, R, and
AX is a complicated function whose behavior is only interesting insofar as the orde
the leading terms in the limit aa\x, At) tends to zero. The data in Fig. 12 clearly shov
the relatively insignificant effect ofM, At) or R on this error in the presence of spatial
discretization errors.

We find similar error behavior in comparing tie= 1024 case against tH¢ = 2048
case, as observed in Figs. 10 and 12, except that the roughly constant error levels obs
in Fig. 12 are lower by a factor of/4, given the }2-reduction inAx and the second-order
spatial discretization errors of the scheme. Thus, eveiNthel024 case is dominated by
spatial discretization errors, at least upMo= 32, At = 160 ns, andR =105,

5.1.5. Summary

The 1D flame problem thus exhibits several of the features observed in the above
plified problem. The scheme is found to be second order in time when stiff-integrat
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tolerances are small. When these tolerances are large, stiff-integration errors (whic
independent ofAt) are large in relation to the explicit time-integration errors, and tf
second-order convergence may not be observed. We also find that, for the presen
cretizations, the effect of splitting on the integration error is mostly exhibited through
larger globalAt, and not necessarily due to splitting per se. When the glabas fixed,
neitherM nor L has a significant effect on the error. Moreover, we have observed
role of spatial discretization errors, which evidently dominate splitting, explicit, and s
time-integration errors for thBl =512 and 1024 cases.

5.2. 2D flame

Two-dimensional unsteady flame computations are very expensive, and thus do not
the above parametric studies. We present here some results from a single computat
illustrate the performance and capabilities of the present construction. We considel
interaction of the above premixed methane—air flame with a counter-rotating 2D vo
pair. This is a typical flow that has been investigated both numerically [77, 69, 78, 79,
80] and experimentally [81-86], and serves as a useful test problem.

5.2.1. Problem Specification

An open 2D rectangular domain is considered, with dimensiofis Q.6 cn?, and is
overlaid by a 256< 1024 grid with uniform cell sizeAx =15.625um) in each coordi-
nate direction. We apply symmetry boundary conditions in the horizandidection, and
outflow boundary conditions in thg-direction. The initial vorticity and temperature fields
att =0 are shown in the leftmost frame of Fig. 13. The vertical right edge of the dom
is the centerline of the vortex pair under consideration, which is one member of an
finite periodic row of vortex pairs along the horizontadirection. The initial condition

20ms 40ms 50ms 6.0ms

FIG.13. Interaction of a counter-rotating vortex pair with a premixed stoichiometric 2@%ilNted methane—
air flame using GRImech1.2 [3] over a time span of 6 ms. The shading indicates the temperature field, 1
solid/dashed contours delineate positive/negative vorticity. The flame propagates downward into the an
reactants, while the vortex pair propagates upward by its self-induced velocity. Generation of a baroclinic vor
dipole is observed due to the misalignment of the vortex-pair-induced pressure field gradient and the flame d
gradient. The vortex pair contorts the flame in a manner that leads to the formation of a detached pocket of bt
reactants.
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is a superposition of the velocity (v) field induced by the periodic row of vortex pairs,
and the temperature, density, and mass fracflorn(Y;) distributions corresponding to a
horizontal premixed flame, with the initial structure in tir@irection from the 1D flame
shown in Fig. 5. The vorticity field corresponding to each initial vortex is a second-or
Gaussian. The vortex-pair structure evolves in time, approaching a vortex doublet, !
increased propagation speed. As a result, its self-induced translational velocity varies i
range 0.5-2.0 m/s. The maximum rotational velocity in the domain is around 2 m/s, giv
a Mach number of 0.0067, a small value as required by the present formulation.

5.2.2. Flow Evolution

The results shown in Fig. 13 are computed using the operator-split stiff scheme,
At=200ns,M =16, L =2, R=10"°. The flame is observed to propagate downward, i
the negativey direction, by burning into the reactants. The vorticity field causes significe
contortion and large variations in the topology of the flame as the vortex pair propag
upward into it. A baroclinic vorticity dipole is generated in the neighborhood of the origir
vortex, in agreement with the numerical results of [77, 69, 74, 87, 4] and the experime
measurements of Muellet al. [86]. The global dynamics of this flow involve penetratior
of the fast vortex pair into the flame, and the formation of a pocket of unburnt mate
carried through by the vortex pair. These dynamics reflect the relative disparity betw
flame and vortex-pair time scales, the ratio of which yields a Daitéc' number Da= 0.4.
With Da < 1, the flow is faster than the flame, and it is expected that some contortion of
flame will occur, as observed here.

We note that the strength of the present vortex pair and the ensuing flow time scale a
times smaller than those in [74] and theG; data in [45]. As a consequence, the presel
flame is subjected to stretch rates that are 10 times smaller; reduced flame contc
is evident, and the rate of decay of the burning rate on the vortex-pair centerline fl:
segment due to the unsteady strain environment is lower. The slower flow time scaleis c
to experimental conditions in [88, 85], and therefore allows improved comparisons to
corresponding measurements. The present operator-split construction is crucial for ene
the computation of this multi-millisecond flow—flame interaction given the requisite spa
resolution and stiff kinetics.

5.2.3. Stability

The above flow and discretization parameters lead to the following CFL numbers,

UmnaxAt
Ae = ——— = 0.0260
AX
DmaxAt , DmaxAt’
)\v,M - AXZ - 249, )‘U,M = W = 0.156
At At
hot = I 0379, A, ;= M _0,0237
’ AX? : AX?2
VmaxAt 1 UmaxAt”
Aoym = N 0.300, Apm = N 0.150

whereUnax is the maximuniu, v) velocity in the domain, an®mayx, ¢max, @andvmax are the
largest species’ diffusion coefficient, mixture thermal diffusivity, and kinematic viscos
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values, respectively. The convective CFL numhbeis very small, well below unity. Thus,
from a stability standpoint, the limiting humber in this flow is clearly the viscous-CF
number in its various forms above. As indicated in Section 3.1.3, in the absence of of
tor splitting, experience with the non-split stiff scheme [4] suggests a diffusional stabi
criterion ofA,, < 0.25. Thus, in the absence of splitting, the abbyg, A, 1, Ay m (Viscous-
CFL numbers for mass, heat, and momentum) would be unstable, and the necessary
imum stable time step would bt =20 ns. In the present cas&t =200 ns is 10 times
larger, leading to significant savings, as discussed below. The above split CFL numr
(Ay.m> Ay 10 Ay.m) have been found to allow stable integration.

The critical diffusional CFL number for time integration of the above 2D flow wit
M =16 is found empirically to be roughly. 07, significantly smaller thanB5. In fact, for
the presenM and forL =4 (A, ., =0.075), increasingt to 240 ns {;, ,, =0.187) leads to
an unstable situation. Clearly, the stability limits of the operator-split schemeMvith 0
are different from those expected from the non-split, or ddlit= 0, constructions. We find
that the 2D critical viscous CFL number, which i28 for M = 0, decreases monotonically
with increasingM. One-dimensional tests suggest a limiting value corresponding to
AB2-diffusional stability for largeM. This limit evidently becomes more significant ac
more AB2-diffusional sub-steps are used with increadihg

Despite this reduction in stable viscous CFL limits due to diffusional sub-stepping,
factor of 10 increase in time step does lead to substantial computational savings. Of cc
the associated speedup is expected to be less than 10-fold due to various overheads ass
with the split scheme. These may be related both to the fractional time stepping for diffu
and to the stiff time-integration procedure.

5.2.4. Stiff Integration and Operator Splitting

Typically, we have found that (for both the split and additive constructions) the s
ODE integration procedure in DVODE requires the most work, in terms of number
function and Jacobian evaluatior$s &nd.7) as well as Newton iterationg\(), within the
flame structure, where reaction rates are large. In contrast, the least work is required |
reactants. The observed maximum valuesof7, andV in the computational domain
are listed in Table VIII for a range of values @¥1, At), for the 2D flame withR= 1075,
These dataindicate that the split scheme requires more work than the non-split scheme
sameAt. This observation is consistent with earlier studies [48, 50, 40], where splitting
diffusion and reaction operators was found to lead to large transients in the stiff-integre
phase of the scheme. These transients result in an increase of the startup cost of the
stiff integrator in each time step, because the integrator would have to use smaller time
to resolve them accurately (given its specified error tolerances), which leads to incre
numbers of time steps, iterations, and both function and Jacobian evaluations. In fact, v
observe that the minimum internal time step used by DVQBRBE,i,) drops significantly
in the split versus the non-split scheme for constant 20 ns, as seen in the table.

Moreover, there is a clear trend of increased work with increaéiigAt). In fact,
increasingAt while maintainingM constant also leads to an increased stiff-integratic
work requirement. This is not surprising since more integration steps and evaluation:
required to cover a larger time span for given error tolerance thresholds. Interestingly
table shows that increasing for constantVl also leads to increasext,,j, used by DVODE.
On the other hand, increasimg at constantt for the split scheme does not lead to mor
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TABLE VI
Variation of Peak and Average Number of Function F, Jacobian 7,
and Newton Iteration A calls with M and At for the 2D flame, Using 10

Processors
At Atoin
M (ns) Fmax Jmax Nmax «Favg javg Navg (ns) Speedup
32 400 110 2 109 7.47 1.02 6.47 12.8 5.8
16 200 82 2 81 5.57 1.01 4.57 7.8 4.7
8 160 68 2 67 5.15 1.00 4.15 7.4 4.7
8 100 54 1 53 449 1 3.49 6.3
8 40 27 1 26 3.66 1 2.66 4.0
4 80 46 1 45 4.23 1 3.23 5.8 2.7
4 50 30 1 29 380 1 2.80 4.2
4 40 27 1 26 3.66 1 2.66 4.0
2 40 27 1 26 366 1 2.66 4.0 15
2 25 20 1 19 3.46 1 2.46 3.0
2 20 18 1 17 3.39 1 2.39 2.0
0 20 9 1 8 3.14 1 2.14 7.8 1.0

Note Also shown are the minimum internal time steft(;,) used by the stiff ODE
integrator, and selective speedup data relevant to the non-split case. All cases are with
L =0, except for theM = 16, 32 cases whelle= 2, 4, respectively.

work, and does not affe@tty,, suggesting that the above stiff-integration startup transier
are not dependent on the number of diffusion sub-steps. We also note that the incre
work associated with largeM, At) does not seem to be associated with any increase
problem stiffness due to splitting, as the amplitude of the largest eigenvalue of the sy
Jacobian is found to be unaffected by splitting or the number of diffusional sub-steps.

5.2.5. Load Balancing

It is important to point out, however, that the actual amount of work is not proportiot
to the peakF, 7, and\/, but rather to their averages over the domain, which—to the exte
that the flame occupies a fraction of the domain—clearly does increaséMitht) as
well, but in a lower proportion. The corresponding variation in averBigg, and\ is also
shown in the table. As a consequence of this variable work load over the domain durin
integration of the chemical source terms, care is necessary to maintain load balancing a
the parallel processors. One option is to use an adaptive load balancing strategy. On the
hand, we have found that a fine-grained non-contiguous distribution of computational ¢
among the processors, which is efficiently done by the present shared-memory harc
(SGI 0Origin2000), is well suited for maintaining load balancing. This would be high
inefficient, however, on a distributed-memory machine, due to the resulting communica
overheads, in which case one is compelled to implement adaptive load balancing.

5.2.6. Scalability

Another overhead associated with increasMdgs the work corresponding to the ex-
plicit integration of the diffusion terms. The computational effort required for diffusic
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can become of the same order as that of the stiff-integration proceduveinsreases,
particularly if the evaluation of transport coefficients is expensive. Even in the pres
work, where simple tabulated transport coefficients are used, in a 1D flaméAwitii6,
R=10"%, on an SGI Origin2000 machine with 10 R10K processors, the diffusion and
action time-integration processes require roughly comparable 30 and 50% of the CPU 1
Moreover, diffusion sub-stepping leads to reduced scalability on the present Non-unif
Memory Access (NUMA) shared-memory implementatiorMass increased. This is due
to the communication overhead associated with each of the consecutive (relatively
compute-intensive) individual diffusional fractional steps. In general, the increased r
of communication to computation is expected to lead to a reduction in scalability on k
NUMA and distributed-memory hardware.

5.2.7. Speedup

The result of the above overheads is a speedup factor of 5, for a 2D GRImech1.2 flan
10 processors, witM = 16,L =2, R=10"6, andAt = 200 ns, against a similar non-split
implementation withAt =20 ns, as seen in Table VIII. Further speedup, of aboutié
achieved withM = 32. However, the increasing overheads lead to diminishing return
further increases iM. The speedup factor increases by 80% upon doulglimgAt) from
(2, 40) to (4, 80). On the other hand, only 23% improvement is evident upon the doub
from (16, 200) to (32, 400).

6. CONCLUSIONS

This work has focused on the development and implementation of an operator-
numerical scheme for modeling flames in multi-dimensional unsteady flow with deta
stiff chemical kinetics. The scheme was tested using a 1D nonlinear model problem
both one- and two-dimensional flames withG3 kinetics. The construction was found to
be computationally efficient, stable, and second-order accurate.

The numerical construction builds on our earlier work involving an additive non-sy
implicit—explicit scheme, where explicit diffusion and implicit reaction are integrated usi
the same global time step. The present formulation splits the diffusion and reaction c
ators in the scalar conservation equations using symmetric second-order Strang spli
Each of the resulting diffusional half-steps is integrated using several sub-steps. Simil
sub-stepping is used for the viscous terms in the momentum equations. The performr
and accuracy of the scheme are governed by several parameters such as the glob:
step, spatial cell size, fractional time steps for scalar and momentum diffusion, and
stiff-integrator tolerances. We have outlined the relative roles of these parameters, an
necessary choices for achieving optimal performance. Generally, we find spatial erro
be dominant over time-integration errors for all cases considered. Time-integration el
are a combination of (1) explicit time-integration errors, (2) operator-splitting errors, ¢
(3) stiff-integration errors. Operator-splitting errors were found to be relatively negli
ble, such that time accuracy is determined by a balance between the global time ste|
the stiff-integration tolerances. When the global time step is very small, the overall tit
integration error is determined by the specified error thresholds used by the stiff integr
As a consequence, the second-order convergence rate of the scheme is not empirica
servable. As the global time step (and number of diffusional sub-steps) is increased, ex
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time-integration errors dominate over stiff-integration errors, which are controlled accc
ing to user-specified tolerances. When this occurs, the expected second-order conver
rate of the scheme becomes evident.

We note that the observed dominance of spatial errors, even when the flame is we
solved, suggests that there is little reason to consider higher-or@gr) time-integration
constructions in the present context. In general, the utility of higher-order time-integrat
schemes has to be evaluated based on a study of all errors inherent in the numerica
struction, and should not be a goal in and of itself. A related issue, which may be particul
delicate in conjunction with split schemes, is that of boundary conditions. In the pres
work, we have performed simulations in open domains only, and the tests have showr
the split schemes are globally second order. In more complex situations discretizatic
boundary conditions should be carefully assessed, especially when these condition
time-dependent.

Two-dimensional reacting flow results were also presented, illustrating the interactio
a premixed methane—air flame with a counter-rotating vortex pair. A speedup factor of 5
demonstrated, relative to the non-split stiff scheme. This speedup allows the modelir
relatively long flow—flame interaction times, in the range of 10—20 ms, on existing hardw:
We are thus able to study a wider range of flow time scales, and to compare with exis
experimental results utilizing relatively slow vortices. Similarly, more detailed chemi
mechanisms can be utilized, affording studies of heavier hydrocarbons and their rol
unsteady flame behavior.

The present experiences suggest that the performance of the scheme can be furth
hanced in various ways. It may well be more efficient to use RK2 instead of AB2 in 1
diffusional sub-steps, thereby increasing the critical viscous-CFL number when diffusic
sub-stepping is implemented. Similarly, other schemes with larger stability bounds ca
considered (see, e.g., [36, 89]). Moreover, the present construction uses the same ni
of sub-steps for all species equations. This is in fact not necessary, as the most restr
diffusion stability constraint is due to the high diffusivity of H, while other species ar
temperatures have a much lower diffusivity. A more optimal construction would use
minimum number of sub-steps necessary for the stable integration of each species, th
reducing the diffusion time-integration effort. Given that the integration of diffusion terr
is in fact a significant fraction of total CPU time, this would lead to an appreciable ovel
speedup of the scheme. Other approaches for improved efficiency are also under cc
eration, such as the utilization of adaptive mesh refinement and the enhancement c
stiff-integration efficiency by using an ODE integrator with reduced restart costs and
proximate Jacobians.

APPENDIX: STIFF SPLIT CORRECTOR

In a stiff-corrector formulation of the split scheme, st§FandS8are substituted by the
following. As indicated earlier, this is not necessary, but is included here for completen
Sa. The diffusion term is integrated iW’ fractional steps of sizat’. The procedure is
essentially identical t&2, except that the corrected convection source te@isandC?,

are used in lieu o€F andC?. Thus, the AB2 fractional steps are expressed as

(P — (YD 3 1 1,
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k+1 k
ot —p 3 1, . _ 1
At/ = E(DE_CSV,D)_E(DE 1_C\I§VI:ZL))+§S; (63)
PoWk+1
k+1 _ 0
= pkHL (64)

Sg. The reaction source terms are integrated over a full time Atepising as starting

values the computed scalar fields fr&xn We also account for half the corrected convectio
source terms and symbolically express the integration as

is

1
YD) = (oY) =S [Dawi (. T.Y) + EC?]dt (65)
At

o't —p! :s/ —iDawT—CWR+}S* dt (66)

At cpT ' 27

P, Wl+l
1+1 0

T = i (67)

Sc. The diffusion term is integrated iN’ fractional steps of sizét’. The procedure
identical toSa, and the starting values are the scalar fields computed at the end of

previous stepSc results in the fully updated scalar fielgs™t, Y1, T+,

en
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