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A stiff,1 operator-split projection scheme is constructed for the simulation of un-
steady two-dimensional reacting flow with detailed kinetics. The scheme is based on
the compressible conservation equations for an ideal gas mixture in the zero-Mach-
number limit. The equations of motion are spatially discretized using second-order
centered differences and are advanced in time using a new stiff predictor–correc-
tor approach. The new scheme is a modified version of the additive, stiff scheme
introduced in a previous effort by H. N. Najm, P. S. Wyckoff, and O. M. Knio
(1998,J. Comput. Phys.143, 381). The predictor updates the scalar fields using a
Strang-type operator-split integration step which combines several explicit diffusion
sub-steps with a single stiff step for the reaction terms, such that the global time
step may significantly exceed the critical diffusion stability limit. Convection terms
are explicitly handled using a second-order multi-step scheme. The velocity field is
advanced using a projection scheme which consists of a partial convection–diffusion
update followed by a pressure correction step. A split approach is also adopted for
the convection–diffusion step in the momentum update. This splitting combines an
explicit treatment of the convective terms at the global time step with several explicit
fractional steps for diffusion. Finally, a corrector step is implemented in order to cou-
ple the evolution of the density and velocity fields and to stabilize the computations.
The corrector acts only on the convective terms and the pressure field, while the
predicted updates due to diffusion and reaction are left unchanged. The correction of
the scalar fields is implemented using a single-step non-split, non-stiff, second-order
time integration. A similar procedure is used for the velocity field, which is followed
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by a pressure projection step. The performance and behavior of the operator-split
scheme are first analyzed based on tests for a nonlinear reaction–diffusion equation
in one space dimension, followed by computations with a detailed C1C2 methane–air
mechanism in one and two dimensions. The tests are used to verify that the scheme
is effectively second order in time, and to suggest guidelines for selecting integration
parameters, including the number of fractional diffusion steps and tolerance levels
in the stiff integration. For two-dimensional simulations with the present reaction
mechanism, flame conditions, and resolution parameters, speedup factors of about
5 are achieved over the previous additive scheme, and about 25 over the original
explicit scheme. c© 1999 Academic Press
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1. INTRODUCTION

The modeling of chemically reacting flow presents pronounced difficulties associated
with the inherently large ranges of spatial and temporal scales involved, the correspond-
ing resolution requirements, and the stiffness of the governing differential equations. Stiff
governing equations [1, 2] arise in diverse applications, including chemically reacting flow,
energetic materials, electrical circuits, atmospheric modeling, and biological systems. In
general, these stiff systems present significant challenges to computational simulations,
typically manifested in very small time step size restrictions.

The manifestation and symptoms of stiffness obviously depend on the nature of the
application. In this work, we focus on the numerical simulation of unsteady two-dimensional
(2D) flow of a premixed reacting hydrocarbon mixture with detailed chemical kinetics. The
manifestation of stiffness in this application is discussed below in light of an illustrative
example of a methane–air flame at atmospheric pressure. In addition to the wide disparity
between various chemical time scales, the flame has a fine spatial structure, requiring a
computational cell size of 16µm or less for adequate resolution. For this spatial resolution
level, the critical H-atom diffusion stability limit for an explicit second-order Runge–Kutta
(RK2) scheme in 2D is around 20 ns. Depending on the particular chemical mechanism,
the time step limitation due to reaction rate stiffness may be below or above this value. We
have found that explicit time integration of C1C2 kinetics (GRImech1.2 [3]) necessitates
a time step smaller than 2 ns [4] for this flame, while the integration of a “skeletal” C1

mechanism [5] is possible with the 20 ns diffusion-limited time step. Thus as the complexity
of the reaction mechanism increases, the temporal stiffness associated with chemical source
terms can become significantly more pronounced.

Stiffness limitations are typically overcome by adopting a stiff-integration scheme or a
specially tailored integration method. A variety of approaches have been used to construct
different classes of stiff solvers. A well-known approach is to rely on backward-difference
formulas (BDFs) [6]; these have been used as a basis for several stiff ODE integration
packages, including GEAR [7, 8], GEARB [9], LSODE [10, 11], and VODE [12]. Although
widespread, the use of BDFs is by no means the only possible, or necessarily most suitable,
approach. A variety of alternatives have also been proposed. Examples include implicit
or semi-implicit Runge–Kutta schemes (e.g., [13–15]), higher-order Taylor methods (e.g.,
[16]), as well as specialized methods that are based on segregation of “fast” and “slow”
variables (e.g., [17–24]).
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The selection of a suitable stiff time-integration approach should be carefully performed,
and must account for the nature of the problem and the properties of the associated model.
For the currently targeted detailed kinetics computations a key factor is the complexity of the
chemical mechanism, which may involve large numbers of species and elementary reaction
steps. Consequently, evaluation of chemical source terms is computationally expensive; this
is relevant for the choice of stiff time-integration scheme which must enable accurate com-
putations with large, stable time stepswithoutrequiring an excessive number of functional
iterations. This feature has, in many situations involving stiff chemical reactions, favored
the selection of a BDF-based integration approach [25–27, 23, 28], and, when possible,
motivated the incorporation of specialized nonlinear equation solvers (e.g., [29–31]). For a
more detailed discussion, see [25, 4].

It should be emphasized, however, that incorporation of a stiff solver into a reacting
flow code is not straightforward, in large part because of the coupling between the reaction
term and the diffusion and convective transport terms. The presence of convective terms
is generally not problematic, since the selection of convective CFL numbers [32, 33] well
below unity is desirable anyway, in order to maintain small phase errors [34]. Thus, an
explicit treatment of convective terms is in most cases suitable. The treatment of the diffusion
term, on the other hand, is a more delicate issue. On the one hand, an implicit treatment
of diffusion would be desirable in order to overcome the stability restriction of an explicit
solver. However, unless the diffusion coefficients are assumed constant, their dependence on
the temperature (and possibly species concentrations) couples the diffusion terms in all the
scalar evolution equations. In two and three dimensions, this leads to a very large system of
coupled nonlinear equations, whose solution would require large memory capacities, involve
large communication costs on parallel machines, and may necessitate the implementation
of specialized nonlinear equation solvers.

The above considerations suggest that “hybrid” implicit–explicit (IMEX) approaches, in
which individual terms in the governing equations are integrated using specialized schemes,
may be particularly advantageous. These non-split schemes have been used extensively in
the literature, e.g., [35–42]. Different versions have been studied and compared against
each other [43, 38, 40, 36, 41, 42, 44]. Our previous work [4] featured the construction
and implementation of a semi-implicit, additive, stiff scheme for the simulation of 2D
reacting flow with detailed kinetics. The numerical formulation in [4] uses a predictor–
corrector methodology; the predictor uses an explicit linear multi-step method while the
corrector incorporates a stiff ODE method for the treatment of chemical source terms. The
scheme was applied to the simulation of premixed methane–air flames [45]. The com-
putations have shown that the scheme efficiently overcomes the chemical stiffness of the
equations of motion and results in significant speedup over its explicit predecessor. How-
ever, since the diffusion terms are handled explicitly in [4], the time step could not be
increased beyond the diffusion stability limit. The objective of the present effort is to ex-
plore a new construction which overcomes this limitation and leads to further CPU-time sav-
ings.

To this end, we have initially considered the implementation of a fully implicit diffusion
solver, a directional splitting technique, and an operator-splitting method. Due in large part
to the computational difficulties discussed above, the last approach was adopted. Starting
from the previous construction in [4], we seek to overcome the diffusive stiffness of the
equations by integrating the diffusion terms in several fractional steps, such that the global
time step can be significantly larger than the diffusion stability limit. This approach appears
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to be well suited to simulations of stiff detailed kinetics, since the CPU time is dominated
by the evaluation of reaction source terms.

The utility of operator-splitting techniques derives from the advantage of the sequen-
tial application of individual operators. Thus, the integration procedure over each split
time step can be optimized for individual operators independently, and computational
efficiency can be consequently enhanced. Operator-splitting techniques have been widely
utilized in atmospheric modeling studies [46–48, 37, 49, 40, 50, 51] to decouple reac-
tion from diffusion and convection terms, diffusion plus reaction from convection, and
to decouple operators in different spatial dimensions. Emphasis has been placed on the
stability of different operator-splitting schemes [46, 52, 53] and the role of stiffness in
stability [54]. The identification and control of splitting errors has been a common subject
of investigation [46, 47, 37, 49, 55, 51]. To date, the symmetric Strang [56] splitting ap-
proach for achieving second-order accuracy has been most commonly and successfully
used. Higher-order splitting approaches have been reported [57, 46, 58, 52], but have
generally been found to exhibit considerable stability-related problems due to negative
time stepping (the stability of operator-split schemes has been discussed in [46, 52, 53]).
Operator-split schemes have been compared against IMEX [37, 40] and other operator-
splitting approaches [50, 51]. Sub-stepping (sub-cycling) has been used both in the split
stiff reaction term integration and in the integration of the diffusion or convection terms [47,
37, 51]. Note that the application of stiff integrators in the context of an operator-split con-
struction requires particular attention to the resulting transients [50] in the stiff integration
procedure and the consequences of restarting the stiff ODE integrator [48, 40] at each time
step.

There is some computational evidence concerning the behavior and performance of
operator-split schemes for flames [59, 60], and some focus on the role of stiff integrators
therein [28]. For instance, the splitting can result in a globally first-order scheme [59, 28],
which raises questions regarding the accuracy of the computations. In [60], a Strang-type
symmetric splitting is used to construct a formally second-order scheme, but the compu-
tational tests show that only superlinear convergence is achieved. Thus, it is also essential
that the behavior of stiff operator-split approaches in flames be thoroughly tested and their
performance carefully established.

As mentioned earlier, this paper explores the use of operator splitting to enhance the
efficiency of simulation of premixed hydrocarbon flames with detailed kinetics. It is or-
ganized as follows: In Section 2, we provide a brief overview of the governing equations
for zero-Mach-number combustion. In Section 3, we describe an operator-split extension
of our previous stiff scheme from [4]. The essential aspect of the present extension is
the replacement of the explicit predictor with a symmetrically split, stiff solver. In Sec-
tion 4, the performance of the new predictor is examined based on detailed tests of a one-
dimensional, nonlinear reaction–diffusion equation. The tests are used to clearly establish
the convergence properties of the scheme and to analyze the effect of splitting parame-
ters and the tolerances used in the stiff integrator. The full scheme is applied in Section 5
to the simulation of premixed methane–air flames in one and two space dimensions. The
simulation uses the C1C2 mechanism GRImech1.2 [3], which involves 32 species and 177
elementary reactions. These tests are used to further examine the results established in
Section 4 and to investigate the speedup gained in the computations. A discussion of the
present experiences is provided in Section 6, together with a summary of major conclus-
ions.
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2. FORMULATION

As in [4], a simplified physical model is used that is based on the zero-Mach-number
limit of the compressible conservation equations [61]. In this limit, acoustic waves are
ignored and the pressure field is decomposed into a spatially uniform componentP0(t) and
a hydrodynamic componentp(x, t)which varies both in space and in time. We assume a 2D
open domain, a gas mixture with zero bulk viscosity [62], and a detailed chemical kinetic
mechanism involvingN species andK elementary reactions. Soret and Dufour effects [63]
are ignored, as well as body forces and radiant heat transfer.

Under the above assumptions, the evolution of the flow field is governed by the mass,
momentum, energy, and species conservation equations, which are expressed in non-
dimensional form as

∂ρ

∂t
+∇ · (ρv) = 0 (1)

∂(ρu)

∂t
+ ∂(ρu2)

∂x
+ ∂(ρuv)

∂y
= −∂p

∂x
+ 1

Re
8x (2)

∂(ρv)

∂t
+ ∂(ρvu)

∂x
+ ∂(ρv

2)

∂y
= −∂p

∂y
+ 1

Re
8y (3)

∂T

∂t
+ v · ∇T = 1

Re Pr

∇ · (λ∇T)

ρcp
+ 1

Re Sc

Z · ∇T

cp
+ Da

wT

ρcp
(4)

∂(ρYi )

∂T
= −∇ · (ρvYi )+ 1

Re Sc
∇ · (ρDi N∇Yi )+ Dawi , (5)

respectively. Here,ρ is the density,T is the temperature,v= (u, v) is the velocity vector,Yi

is the mass fraction of speciesi , µ is the dynamic viscosity,λ is the thermal conductivity,
cp is the mixture specific heat,wi is the chemical production rate of speciesi ,wT is rate of
chemical heat release, Re, Pr, Sc, and Da are the Reynolds, Prandtl, Schmidt, and Damk¨ohler
numbers, respectively, while8x,8y are the viscous stress terms.

The mixture is assumed to obey the perfect gas law, with individual species molecular
weights, specific heats, and enthalpies of formation. The equation of state is expressed as

P0 = ρT/W̄, (6)

whereW̄≡ 1/(
∑N

i=1Yi /Wi ) is the local effective molar mass of the mixture, andWi is the
molecular weight of speciesi . Note that for an open domainP0 is constant, whilep varies
in space and time [4]. The specific heat of the mixture is given by

cp =
N∑

i=1

Yi cp,i , (7)

wherecp,i is the specific heat of thei th species at constant pressure.
The Nth species, here N2, is assumed dominant such that the diffusion velocity of any

other speciesi 6= N in the mixture is approximated byV i =−Di N∇Yi /Yi , whereDi N is
the binary mass diffusion coefficient of speciesi into theNth species at the mixture local
temperature and stagnation pressure.VN is found from the identity

∑N
i=1Yi V i ≡ 0 [63].

Similarly, the mass fractionYN is obtained from the identity
∑N

i=1Yi ≡ 1. Meanwhile,Z
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is defined byZ≡ ∑N
i=1cp,i Di N∇Yi . Note that the above approximation ofV i assumes

thatYi ¿ YN , i = 1, . . . , N− 1, i.e., that speciesi = 1, . . . , N− 1 are traces in speciesN.
Finally, for computational efficiency, the mixture transport properties (µ, λ) are set to those
of the dominant species at the local temperature.

The production rate for each species (wi ) is given by the sum of contributions of ele-
mentary reactions [63], with Arrhenius ratesrk= AkTbke−Ek/RT, k= 1, . . . , K . The overall
progress of an elementary reaction accounts for both forward and backward rates, correc-
tions for third body efficiencies, and pressure dependence [64]. The heat release term is
given by

wT = −
N∑

i=1

hiwi , (8)

wherehi = ho
i +

∫ T
To cp,i dT is the enthalpy of speciesi , and the superscripto is used to

denote known reference conditions.
Finally, for the purpose of the numerical implementation described below, the time rate

of change of density is found by differentiating the equation of state,

∂ρ

∂t
= ρ

(
− 1

T

∂T

∂t
− W̄

N∑
i=1

1

Wi

∂Yi

∂t

)
, (9)

and substituting for∂T/∂t and∂Yi /∂t from Eqs. (4) and (5), respectively.

3. NUMERICAL SCHEME

As mentioned in the Introduction, the primary objective of the present effort is to explore
an operator-split formulation of the semi-implicit stiff scheme developed in [4]. To this
end, we start with a brief summary of the non-split scheme and then outline the present
modification.

In both cases, we rely on a projection scheme for variable-density reacting flow. The
projection scheme was originally developed by Chorin [65] for the incompressible Navier–
Stokes equations. Recently, several variants have been proposed for variable-density (e.g.,
[66, 67] and reacting flows (e.g., [68–71]). The present formulation is adapted from our
previous effort in [4]. We focus on an open 2D domain and rely on a second-order centered
finite-difference discretization of the equations of motion. Field variables are discretized
using a staggered grid with uniform cell size along each coordinate direction. Velocity
components are specified at cell edges, while scalar variables are specified at cell centers.

3.1. Predictor–Corrector Stiff Scheme

The stiff projection scheme from [4] is based on a predictor–corrector integration ap-
proach. The predictor uses the explicit, second-order Adams–Bashforth (AB2) scheme to
advance the velocity and scalar fields, and incorporates a pressure correction step in order
to satisfy conservation of mass. The pressure correction step involves the inversion of a
pressure Poisson equation, which is performed using an FFT solver. The corrector, on the
other hand, is a mixed, non-split (additive) scheme which combines stiff integration of
reaction source terms with second-order Runge–Kutta (RK2) treatment of the remaining
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terms. The stiff integrator is adapted from the DVODE package [12] and used in the species
equations.

For notational convenience and clarity of the presentation, we first rewrite the species,
density, and momentum evolution equations as

∂(ρYi )

∂t
= Li ≡ Ci + Ri + Di (10)

∂ρ

∂t
= Cρ + Rρ + Dρ + Gρ (11)

∂(ρv)
∂t
= N(ρ, v)+ F(µ, v)−∇ p, (12)

whereN(ρ, v) is the momentum convection term,F(µ, v) is the viscous force term, while

Ci = Ci (ρ, v,Yi ) ≡ −∇ · (ρvYi )

Ri = Ri (ρ, T,Y) ≡ Dawi

Di = Di (ρ, T,Yi ) ≡ 1

Re Sc
∇ · (ρDi N∇Yi )

Cρ ≡ ρ

T
v · ∇T

Rρ ≡ − 1

cpT
DawT

Dρ ≡ − 1

Re PrcpT
∇ · (λ∇T)+ ρ

T

1

cpRe Sc
Z · ∇T

Gρ ≡ −ρCW

CW =
[

N∑
i=1

Yi

Wi

]−1 N∑
i=1

1

ρWi

(
−ρv · ∇Yi + Dawi + 1

Re Sc
∇ · (ρDi N∇Yi )

)
.

Using these definitions, the non-split stiff scheme is summarized as follows.

3.1.1. Explicit Predictor

N1. Based on the known solution at time leveln, the source terms in the species and
density evolution equations, namely the fieldsLn

i , Cn
i , Rn

i , Dn
i , Cn

ρ , Rn
ρ , Dn

ρ , andGn
ρ , are

evaluated.
N2. Predicted values of the density, ˜ρ, species concentrations,Ỹi , i = 1, . . . , N − 1, are

determined using the AB2 scheme and predicted values of the temperature are obtained
from the equation of state. Thus, we use

ρ̃ − ρn

1t
= 3

2

(
Cn
ρ + Rn

ρ + Dn
ρ + Gn

ρ

)− 1

2

(
Cn−1
ρ + Rn−1

ρ + Dn−1
ρ + Gn−1

ρ

)
(13)

ρ̃Ỹi − ρnYn
i

1t
= 3

2

(
Cn

i + Rn
i + Dn

i

)− 1

2

(
Cn−1

i + Rn−1
i + Dn−1

i

)
(14)

T̃ = P0
˜̄W

ρ̃
. (15)

N3. An intermediate velocity field,̄v, is then determined by integrating the pressure-split
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momentum equations [72],

ρ̃v̄− ρnvn

1t
= 3

2
(Nn + Fn)− 1

2
(Nn−1+ Fn−1). (16)

N4. The intermediate hydrodynamic pressure field is determined by inverting the pressure
Poisson equation [68],

∇2 p̃ = 1

1t

[
∇ · (ρ̃v̄)+ ∂ρ

∂t

∣∣∣∣∗ ], (17)

where∂ρ/∂t |∗ is given by the second-order discretization [71]

∂ρ

∂t

∣∣∣∣∗ = 1

21t
(3ρ̃ − 4ρn + ρn−1). (18)

N5. Finally, the predicted velocity field̃v is obtained using the projection step

ρ̃ṽ− ρ̃v̄
1t

= −∇ p̃. (19)

3.1.2. Stiff, Non-split Corrector

N6. Corrected values for the scalar fields are obtained using a mixed (non-split) scheme,
which combines a stiff treatment of reaction source terms and RK2 treatment of the remain-
ing terms. The problem is formally written,locally at each cell center, as a coupled system
of N nonlinear evolution equations having the form

∂(ρYi )

∂t
= 1

2

[
Cn

i + Dn
i

]+ 1

2
[Ci (ρ̃, ṽ, Ỹi )+ Di (ρ̃, T̃, Ỹi )] + Ri (ρ, T,Y) (20)

∂ρ

∂t
= 1

2

[
Cn
ρ + Cρ(ρ̃, ṽ, T̃)

]+ 1

2

[
Dn
ρ + Dρ(ρ̃, T̃, Ỹ)

]− 1

2

[
ρnCn

W + ρ̃C̃W
]+R(ρ, T,Y),

(21)

whereρY= (ρY1, ρY2, . . . , ρYN−1) is the reduced local vector of mass concentrations,

CW ≡ W̄
1

ρ

N∑
i=1

−∇ · (ρvYi )− 1
Re Sc∇ · (ρYi V i )+ Yi∇ · (ρv)

Wi
(22)

and

R(ρ, T,Y) ≡ − 1

cpT
DawT − W̄

N∑
i=1

Dawi

Wi
. (23)

The coupled system (20)–(21) is integrated locally fromtn to tn+1 using DVODE [12]. The
initial conditions correspond to the scalar values at time leveltn, and the integrations are
performed independently at the cell centers where the scalar fields are defined.

N7. An intermediate velocity field̂v is obtained from the pressure-split momentum equa-
tions

ρn+1v̂− ρnvn

1t
= 3

2
(Nn + Fn)− 1

2
(Nn−1+ Fn−1). (24)
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This velocity distribution is then corrected using the projection step

ρn+1vn+1− ρn+1v̂
1t

= −∇ p̂ . (25)

p̂ is the solution of the pressure Poisson equation

∇2 p̂ = 1

1t

[
∇ · (ρn+1v̂)+ ∂ρ

∂t

∣∣∣∣∗∗], (26)

where

∂ρ

∂t

∣∣∣∣∗∗ = 1

21t
(3ρn+1− 4ρn − ρn−1). (27)

3.1.3. Remarks

1. Performance. The performance of the above additive, semi-implicit stiff scheme was
analyzed in detail in our previous work [4]. One- and two-dimensional unsteady tests have
shown that the stiff construction efficiently accommodates stiff reactions. In particular, the
scheme enables large and stable time steps, achieves second-order convergence in time, and
leads to substantial speedup of the computations.

2. Density ratio. The predictor–corrector scheme used above is adapted from the con-
servative formulation of the compressible zero-Mach-number scheme proposed in [73]. It
is indicated in [74] that the corrector enhances the coupling between density, velocity, and
hydrodynamic pressure fields and, consequently, the stability of the computations. With-
out the corrector stage, the computations become unstable when the ratio of maximum to
minimum density is roughly larger than 2. When the corrector is used, stable computations
have been performed with density ratios as large as 10.

3. Stability. The stiff scheme has been applied extensively to simplified model tests and
also in large-scale simulations (e.g., [45, 75]). For the methane–air mechanisms considered,
the computations have shown that the time step is restricted by the stability limit associated
with the explicit treatment of the diffusion term. This limitation is especially stringent
for the present premixed flame simulations which are characterized by a very thin flame
structure, leading to fine mesh resolution. Since the stiff integration of the kinetic rate terms
could be performed with time steps larger than the critical diffusion limit, it appears that
the efficiency of the integration approach can be further increased if this limitation can be
overcome or avoided. This possibility, together with our earlier observation that the CPU-
time cost is dominated by the kinetic rate evaluations, motivates the development of the
splitting approach below.

4. Split-scheme stability.We note that the straightforward application of AB2 or RK2 to
the explicit time integration of the isolated scalar diffusion equation leads to time-integration
stability viscous-CFL restrictions ofλv,c= 1/2n+1 and 1/2n, respectively, wheren is the
number of space dimensions. However, the above formulation, involving the coupled AB2–
RK2 construction, was empirically found to exhibit the RK2 restriction of 1/2n [4]. Evi-
dently, overall stability is governed more by the stability of the corrector step. As we shall
see below, the situation is different when AB2 diffusion sub-steps are implemented in the
operator-split construction. The critical viscous-CFL number is found to approach that of
AB2 as the number of AB2 sub-steps increases.
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5. Treatment of convective terms.As noted in the Introduction, adequate representation
of the flame structure of an atmospheric methane–air flame with GRImech1.2 requires cell
sizes of 16µm or smaller. At this resolution, there are about 43 grid points within the flame
thermal width of the stoichiometric (20% N2-diluted) flame considered here. Given the
present flow, with characteristic velocities of 2 m/s, we find a corresponding maximum cell
Reynolds number of 2.3. In fact, we find both the split and non-split schemes to be stable
for cell Reynolds numbers as large as 25. Thus, for the present low-speed flow, the use of
a centered convection scheme is quite suitable, and incorporation of upwind discretization
is not essential.

3.2. Split, Stiff Scheme

The split scheme is based on symmetric Strang splitting of the diffusion and reaction oper-
ators, where two half-time-step integrations of the diffusion term are separated by a full-time-
step integration of the reaction term. Moreover, each diffusion 1/2-step is integrated using
several fractional sub-steps, thereby allowing the use of a large global time step, several times
larger than the critical diffusional time step. Thus, if we denote byM the number of frac-
tional diffusion steps in the integration of the scalar fields, whereM is even, letM ′ ≡M/2
be the number of sub-steps in each scalar diffusion 1/2-step, and define1t ′ ≡1t/M as the
fractional scalar diffusion time step, then the integration of the scalar diffusion and reaction
terms (neglecting convection for now) can be symbolically represented as

Un+1 = DM ′
1t ′S1tDM ′

1t ′U
n, (28)

whereUn+1 andUn are discrete solutions at timestn+1 andtn, respectively,S1t represents
the stiff integration of the reaction source term over a step size1t , andD1t ′ represents
a fractional diffusion step of size1t ′. This basic formulation is the basis of the detailed
split–stiff scheme construction presented below for the full reacting flow problem.

In order to describe the construction of the complete scheme, we introduce some ad-
ditional definitions. We denote byL the number of fractional diffusion sub-steps in the
integration of the momentum equations, whereL may be even or odd. We also introduce
the fractional viscous momentum sub-step1t ′′ ≡1t/L. In addition, we decompose the
density source termGρ (Eq. (11)) into convective, reactive, and diffusive parts using

Gρ = −CW,C − CW,R− CW,D

CW,C ≡ W̄
N∑

i=1

−ρv · ∇Yi

Wi

CW,R ≡ W̄
N∑

i=1

Dawi

Wi

CW,D ≡ W̄
N∑

i=1

1

Wi

1

Re Sc
∇ · (ρDi N∇Yi ).

(29)

Using these definitions, the operator-split scheme is summarized as follows.
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3.2.1. Stiff Predictor

S1. Explicit convection source terms for the species (Ce
i ) and density (Ce

ρ) evolution
equations are evaluated. We rely on the explicit AB2 scheme and set

Ce
i =

3

2
Cn

i −
1

2
Cn−1

i (30)

Se
ρ =

3

2

(
Cn
ρ − Cn

W,C

)− 1

2

(
Cn−1
ρ − Cn−1

W,C

)
. (31)

S2. The diffusion term is integrated inM ′ fractional steps of size1t ′. The first step
is performed using a second-order Runge–Kutta (RK2) scheme, using as starting values
the known field values at timetn. WhenM ′> 1, the followingM ′ − 1 fractional steps are
performed using AB2. Each of the fractional steps accounts for half the explicit convection
terms. Thus, the AB2 fractional steps take the form

(ρYi )
k+1− (ρYi )

k

1t ′
= 3

2
Dk

i −
1

2
Dk−1

i + 1

2
Ce

i (32)

ρk+1− ρk

1t ′
= 3

2

(
Dk
ρ − Ck

W,D

)− 1

2

(
Dk−1
ρ − Ck−1

W,D

)+ 1

2
Se
ρ (33)

Tk+1 = P0W̄k+1

ρk+1
.

S3. The reaction source terms are integrated over a full time step1t , using as starting
values the computed scalar fields at the end of the previous step. We also account for half
the explicit convection source terms and symbolically express the integration as

(ρYi )
s+1− (ρYi )

s = S
∫
1t

[
Dawi (ρ, T,Y)+ 1

2
Ce

i

]
dt (34)

ρs+1− ρs = S
∫
1t

[
− 1

cpT
DawT − CW,R+ 1

2
Se
ρ

]
dt (35)

Ts+1 = P0W̄s+1

ρs+1
. (36)

S4. A convection–diffusion step identical toS2 is performed. Specifically, the diffusion
term is integrated inM ′ fractional steps of size1t ′, and each of these steps accounts for
half the convection source term. The starting values are the scalar fields computed at the
end of the previous step.S4 results in intermediate values of the scalar fields, denoted by
(ρ̃, Ỹ, T̃).

S5. Update the velocity field using the pressure-split momentum equations. The convec-
tive terms are treated explicitly using the second-order Adams–Bashforth scheme over a full
time step, while the viscous terms are integrated inL fractional steps. The first fractional
diffusion step is performed with RK2, using as starting values the known field quantities
at tn. The followingL − 1 steps are performed with AB2. The convective source terms are
accounted for within the fractional diffusion steps. Thus, the AB2 fractional steps take the
form

(ρv)l+1− (ρv)l

1t ′′
= 3

2
F(µl , vl )− 1

2
F(µl−1, v l−1)+ Ce

v, (37)
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where

Ce
v ≡

3

2
Nn − 1

2
Nn−1 (38)

is the effective convection source term. The intermediate values of density and viscosity
are obtained by interpolation between the values based on the predicted scalar fields and
the known values attn; we set

ρl = ρn + l

L
[ρ̃ − ρn] (39)

µl = µ(Tn)+ l

L
[µ(T̃)− µ(Tn)]. (40)

The intermediate velocity fieldv≡ vL resulting from the above fractional step update is
then corrected using the projection step

ρ̃ṽ− ρ̃v̄
1t

= −∇ p̃, (41)

where p̃ is the solution of (17).
Thus, at the end ofS5, predicted values for both scalar fields,(ρ̃, Ỹ, T̃), and the velocity

field, ṽ, are available.

3.2.2. Non-stiff Corrector

While a stiff corrector formulation is possible, as illustrated in the Appendix, it is im-
portant to note that the need for a corrector is dictated by the stability requirements for
the variable-density projection scheme [73, 74] and not those of the scalar integration. In
particular, the scalar integration in a stiff corrector formulation involves a repetition of the
RK2/AB2 diffusion steps and the stiff integration of the reaction source terms done in the
predictor, albeit with modified convective terms. This suggests that the convective change
in the scalars is the only component of ˜ρ − ρn and(ρ̃Yi )− (ρYi )

n that requires correction.
Based on this observation, a non-stiff corrector is formulated as follows.

S6. Effective convection source terms for species and density evolution equations are
re-evaluated using an RK2 approach based on the starting values attn and the predicted
values fromS5. Thus, we set

C∗i =
1

2
Ci (ρ̃, ṽ, Ỹi )+ 1

2
Cn

i (42)

S∗ρ =
1

2
[Cρ(ρ̃, ṽ, T̃)− CW,C(ρ̃, ṽ, Ỹi )] + 1

2

(
Cn
ρ − Cn

W,C

)
. (43)

S7. The effective non-convective change in the scalars in the predictor step is evaluated:

1ρ ≡ ρ̃ − ρn −1t

[
3

2

(
Cn
ρ − Cn

W,C

)− 1

2

(
Cn−1
ρ − Cn−1

W,C

)]
(44)

1(ρYi ) ≡ ˜(ρYi )− (ρYi )
n −1t

[
3

2
Cn

i −
1

2
Cn−1

i

]
. (45)
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S8. The corrected scalar fields are evaluated:

ρn+1 = ρn +1ρ +1t S∗ρ (46)

(ρYi )
n+1 = (ρYi )

n +1(ρYi )+1tC∗i (47)

Tn+1 = P0W̄n+1

ρn+1
. (48)

Thus,S8results in the fully updated scalar fields(ρn+1,Yn+1, Tn+1).
S9. Update the velocity field using the pressure-split momentum equations. The pro-

cedure is very similar to that inS5, except that the intermediate scalar fields are based
on interpolation between updated values attn+1 and the starting values attn. Thus, in the
corrector the AB2 fractional steps are given by

(ρv)l+1− (ρv)l

1t ′′
= 3

2
F(µl , vl )− 1

2
F(µl−1, v l−1)+ Ce

v, (49)

where

ρl = ρn + l

L
[ρn+1− ρn] (50)

µl = µ(Tn)+ l

L
[µ(Tn+1)− µ(Tn)]. (51)

The velocity distribution̂v≡ vL resulting from the above fractional step update is then
corrected using the projection step

ρn+1vn+1− ρn+1v̂
1t

= −∇ p̂, (52)

where p̂ is the solution of (26).
S9 completes the integration cycle, as updated values for both the scalar fields,ρn+1,

Yn+1, andTn+1, and the velocity field,vn+1, are available.

4. SIMPLIFIED ANALYSIS

As described above, the present approach relies on multiple fractional times and combines
a stiff integrator with linear multi-step and predictor–corrector methods. Consequently,
a number of questions immediately arise regarding the construction. For instance, does
the overall scheme in fact exhibit the expected second-order convergence? What is the
effect of the number of fractional diffusion steps on the accuracy of integration? Fur-
thermore, the stiff-integration procedure in DVODE [12] is based on achieving a desired
accuracy by controlling the vectore= (e1, e2, . . . ,eP) of estimated local errors in the
solutiony= (y1, y2, . . . , yP). The solver adaptively refines the internal time step and per-
forms nonlinear Newton iterations so that the root-mean-square (rms) norm of the vector
q,qj ≡ ej /mj , j = 1, . . . , P, falls below 1, i.e.,(

1

P

P∑
j=1

q2
j

)1/2

≤ 1. (53)
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Here, mj ≡ r j |yj | +aj , j = 1, . . . , P, is a vector of weights, whiler j and aj are user-
defined relative and absolute tolerances for thej th component of the solution, respectively.
Since the accuracy of the stiff integration depends on these tolerances, how should they be
selected and what is their effect on the overall behavior of the solution?

Due to the large number of parameters involved, and since repeated unsteady calcula-
tions with detailed kinetics are computationally expensive, we consider here a simplified
setting that closely mimics the targeted simulations and that enables us to address the above
questions in a detailed and efficient fashion.

4.1. Specification of the Simplified Problem

We consider the following family of nonlinear reaction–diffusion equations,

∂u

∂t
= ∂2u

∂x2
+ 8

δ2
u2(1− u), −∞ ≤ x ≤ ∞, (54)

with boundary conditionsu(x)→ 1 asx → −∞ andu(x)→ 0 asx →∞. Here,δ > 0
is a freely selected parameter.

It is easy to verify that Eq. (54) admits the family of solutions

u(x, t) = 1

2

(
1− tanh

[
x − ct

δ

])
, (55)

wherec= 2/δ.
In addition, it is natural to interpret the solution (55) as a steady-propagating front of

width δ and speedc. Clearly, Eq. (54) has a structure similar to that of the scalar equations
in the system for zero-Mach-number combustion. Together with the availability of exact
solutions, this provides an ideal setting for analyzing the present split, stiff-integration
approach.

Below, we adapt the scheme of the previous section to the simulation of Eq. (54). The
simulations are initialized using the steady solutions given in Eq. (55); i.e., we set

u(x, 0) = 1

2

(
1− tanh

[
x

δ

])
. (56)

Solutions are obtained using a finite-difference grid which extends over the interval−Z≤
x≤ Z, ZÀ δ. Second-order centered differences are used to approximate the diffusion
term. At x=−Z, the Dirichlet conditionu(−Z, t)= 1 is used, while a homogeneous
Neumann condition is used atx= Z. The domain truncation lengthZ is selected large
enough that the solution is essentially independent of bothZ and the conditions imposed
at the boundaries of the domain.

In order to analyze the behavior of the split stiff scheme, solutions are also obtained using
a second-order non-split explicit scheme. The non-split scheme uses RK2 time integration
as a startup procedure, and AB2 for subsequent time steps. For the split scheme withM = 2,
the time step is naturally restricted by the RK2 diffusion stability limit, with the critical
time step in 1D,

1tc ≡ 1x2

2
, (57)
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where1x is the mesh size. Unless otherwise indicated, we will refer to this1tc below to
imply1tc(M = 2) of the split scheme in 1D. Note that the corresponding critical time step
for the explicit AB2 scheme in 1D is1x2/4.

4.2. Numerical Study

The results of the explicit calculations are compared to solutions obtained using the stiff,
operator-split scheme. As outlined earlier (Eq. (28)), these solutions combineM explicit
diffusion sub-steps, each of size1t ′ =1t/M , with a single stiff step,1t , for the reaction
source term. When comparing the results of split calculations, we fix1t ′ and varyM ; thus,
the global time step1t is varied while the diffusion sub-step1t ′ is constant. Also, for the
purposes of the analysis, the diffusion sub-step in the split computations coincides with the
global time step of the explicit, non-split computations.

In most cases, we shall focus on a propagating front with widthδ= 1. Simulations are
performed on a finite domain withZ= 20, with different resolution levels1x= 2Z/N,
whereN is the total number of sub-intervals. Equation (54) is integrated tot = 0.6144; i.e.,
the front propagates for a distance approximately 1.2 times its own width. At the end of the
computations, local errors are computed using the exact solution,

en
i = un

i − uex(xi , tn) = un
i −

1

2

(
1− tanh

[
xi − 2tn/δ

δ

])
, (58)

and a global error measure is formed using the discretel2 norm,

E2 =
[

1

N + 1

N+1∑
i=1

(
un

i − uex(xi , tn)
)2

]1/2

. (59)

4.2.1. Spatial and Temporal Errors

Figure 1 shows the spatial distribution of the error at the end of the computations for a
steady front withδ= 1. Plotted are results obtained at three resolution levels,N= 1000,
2000, and 4000, and different values ofM . The fractional diffusion sub-step is taken as
half the (RK2) critical diffusion step, i.e.,1t ′ =1tc/2=1x2/4. The stiff integration of the
reaction term uses zero relative tolerance and an absolute tolerance of 10−13. Also shown
in Fig. 1 are results obtained with a non-split AB2 scheme with1t =1x2/4. For the cases
of Fig. 1, Table I shows the corresponding rms errors, together with the temporal order of
convergence of the calculations. The latter is obtained by repeating the calculations with
decreasing time steps and monitoring the differences between numerical solutions obtained
at the same spatial resolution level. This enables us to isolate time discretization errors and
consequently determine the temporal order of convergence.

Figure 1 and Table I show that forN= 4000 the spatial error distribution and the rms
values are essentially independent ofM , at least in the range considered. ForN= 2000,
the errors remain essentially constant as long asM ≤ 32, while for N= 1000 errors are
nearly constant whenM ≤ 16. Meanwhile, Table II shows that forN= 1000, the rms error
at the final time is essentially independent of the time step, except for slight changes for
M = 32 for the largest time step considered,1t ′ =1tc/2. Combined, the results of Fig. 1
and Tables I and II lead to the following two observations: (1) The rms errors at the
final time are essentially independent of bothM and1t ′, as long as the global time step
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FIG. 1. Spatial distribution of the error between the numerical and exact solutions for the split scheme with
different values ofM . Results using an explicit non-split AB2 scheme are also plotted. The absolute and relative
tolerances used are 10−13 and 0, respectively. The computations are performed withδ= 1, Z= 20, andN= 1000
(top), N= 2000 (middle), andN= 4000 (bottom). The fractional diffusion step1t ′ = tc/2.
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TABLE I

Root-Mean-Square Error and Order of Convergence for Reacting

Front Simulations with δ = 1, Z = 20, and∆t′ = ∆tc/2

Scheme 1t ′ × 104 1t × 104 rms error×106 Order of convergence

N= 1000,1x= 0.04
AB2 — 4 9.9379 1.9994
Split, M = 2 4 8 9.9711 1.9929
Split, M = 4 4 16 10.025 1.9988
Split, M = 8 4 32 10.222 1.9998
Split, M = 16 4 64 11.063 1.9999
Split, M = 32 4 128 15.111 1.9999

N = 2000,1x = 0.02
AB2 — 1 2.4864 1.9998
Split, M = 2 1 2 2.4883 1.4347
Split, M = 4 1 4 2.4917 1.9208
Split, M = 8 1 8 2.5038 1.9925
Split, M = 16 1 16 2.5525 1.9986
Split, M = 32 1 32 2.7626 1.9997
Split, M = 64 1 64 3.7757 1.9999

N= 4000,1x= 0.01
AB2 — 0.25 0.62176 1.9999
Split, M = 2 0.25 0.50 0.62145 −0.5411
Split, M = 4 0.25 1.0 0.62187 0.1183
Split, M = 8 0.25 2.0 0.62273 1.3625
Split, M = 16 0.25 4.0 0.62576 1.9184
Split, M = 32 0.25 8.0 0.63793 1.9926

Note. The split scheme uses an absolute tolerance of 10−13.

1t =M1t ′ falls below a well-defined value. This value appears to be weakly dependent
on the spatial resolution level. (2) When the global time step is sufficiently small (in the
sense just described) the rms errors are dominated by the spatial discretization errors. This
can be appreciated from Table II. Note that the dominant effect of the spatial discretization
error complicates the temporal convergence analysis, which, as mentioned above, requires
that one carefully isolate spatial and temporal errors.

TABLE II

Root-Mean-Square Errors for Reacting Front Simulations with

δ = 1, Z = 20, andN = 1000

Scheme 1t ′ =1tc/2 1t ′ =1tc/4 1t ′ =1tc/8

AB2 (1t =1t ′) 9.9379× 10−6 9.9445× 10−6 9.9461× 10−6

Split, M = 2 9.9711× 10−6 9.9527× 10−6 9.9481× 10−6

Split, M = 4 10.025× 10−6 9.9662× 10−6 9.9515× 10−6

Split, M = 8 10.222× 10−6 10.014× 10−6 9.9635× 10−6

Split, M = 16 11.063× 10−6 10.208× 10−6 10.011× 10−6

Split, M = 32 15.111× 10−6 11.048× 10−6 10.205× 10−6

Note. The split calculations use an absolute tolerance of 10−13.
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4.2.2. Convergence Rate

Table I also indicates that the split time integration does achieve second-order con-
vergence. Second-order convergence is in fact observed in all cases considered, except for
N= 4000, where the global time step1t is very small. (Recall that in Table I,1t =M1tc/2,
and that the critical diffusion step1tc varies as1x2.) Specifically, forN= 4000 the com-
puted order of convergence increases monotonically from a negative value atM = 2 to
approximately 2 atM = 32.

Detailed analysis of the computations reveals that the origin of this phenomenon is as-
sociated with therelative magnitude of the stiff-integration errors with respect to errors
associated with the fractional integration of the diffusion time step. As mentioned earlier,
DVODE uses absolute and relative tolerances to control the integration error; for simplicity
the present tests use zero relative tolerance and an absolute tolerance of 10−13. Meanwhile,
in the multi-step methods used to treat the diffusion term, integration errors are proportional
to1t ′2. Thus, one would expect the global time integration error to behave as the sum of
two terms: a constant that depends on the tolerances of the stiff integrator, and an O(1t ′2)
contribution due to the integration of the diffusion term. When the selected tolerances are
such that the stiff-integration errors are significantly smaller than the explicit O(1t ′2)errors,
one would obviously expect the scheme to exhibit second-order convergence. This is con-
sistent with the results obtained forN= 1000, forN= 2000 withM ≥ 4, and forN= 4000
whenM ≥ 16. On the other hand, when the stiff-integration errors are comparable with the
remaining (second-order) errors, one would expect time convergence tests to yield an order
of convergence that is lower than 2. This trend is observed in Table I forN= 2000 and
M = 2 and forN= 4000 andM = 8. Finally, when the stiff-integration errors are dominant,
the global time-integration error should essentially be independent of diffusion step, and
the convergence analysis is expected to yield approximately zero-order convergence. This
behavior can be seen in Table I forN= 4000 andM ≤ 4.

4.2.3. Stiff-Integration Error Tolerances

In order to further examine the above trends, additional tests were conducted to analyze
the effect of the tolerances used in the stiff integrator. A sample of these computations
is provided in Table III, which provides rms errors obtained withN= 1000 and absolute
tolerances of 10−12 and 10−11. The results of Table III are consistent with our observa-
tions above. In particular, they show that increasing the tolerance may lead to a reduction
in the computed order of convergence, and that increasingM (and consequently1t) at
a fixed tolerance level leads to an increase in the computed order of convergence! This
is because the stiff-integration errors are controlled by the user-defined tolerance level,
while the errors due to splitting and explicit treatment of diffusion vary quadratically with
1t . Thus, by fixing the tolerance and increasing the global time step, the relative magni-
tude of stiff-integration errors decreases. (One should also note that increasing the inte-
gration interval at a fixed tolerance level places a heavier burden on the stiff integration,
which must deliver the same accuracy for a larger integration period.) Another interesting
observation in Tables I and III is that while the tolerance value may have a significant
effect on the computed order of convergence, its effect on the rms error value appears
to be insignificant. In fact, the results clearly show that, for all the tolerances consid-
ered, spatial discretization errors remain dominant, as long as the global time step remains
small.
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TABLE III

Effect of Absolute Tolerance on rms and Order of

Convergence for Reacting Front Simulations withδ = 1,

Z = 20,N = 1000, and∆t′ = ∆tc/2

Scheme rms error×106 Order of convergence

Absolute tolerance= 10−12

Split, M = 2 9.9708 1.9087
Split, M = 4 10.025 1.9907
Split, M = 8 10.222 1.9983
Split, M = 16 11.063 1.9997
Split, M = 32 15.111 1.9999

Absolute tolerance= 10−11

Split, M = 2 9.9680 1.2753
Split, M = 4 10.023 1.8961
Split, M = 8 10.221 1.9915
Split, M = 16 11.063 1.9971
Split, M = 32 15.111 1.9994

4.2.4. Splitting Errors

In order to further analyze the performance of the split scheme, tests were also performed
to determine an approximate criterion for splitting errors to become significant. Intuitively,
one would expect splitting errors to remain small as long as the changes during a complete
integration step are relatively small. For the present reaction–diffusion problem, a reasonable
interpretation is that the characteristic diffusion depth during a time step,`, is much smaller
than the width of the front, i.e.,̀∼√1t < aδ with a¿ 1.

From Table I, one observes that rms errors are essentially independent of1t as long
as M ≤ 16, i.e.,a∼ 0.04. In order to verify this approximate scaling, computations were
performed for a thin reaction–diffusion front withδ= 0.5, usingZ= 10 andN= 1000, and
were carried to a final timet f = 0.3122; i.e., the ratio of front propagation distance to front
width is equal to that of the earlier case withδ= 1. The computed errors for different values
of M are reported in Table IV. Note that the thin front runs are performed with1t ′ = 10−4;
i.e., the ratiò /δ for a given value ofM is the same in Table I (withN= 1000) and Table IV.

TABLE IV

Root-Mean-Square Error and Order of Convergence

for Reacting Front Simulations with δ = 0.5, Z = 10,N =

1000,∆x = 0.02, and∆t′ = 10−4

Scheme rms error×106 Order of convergence

Split, M = 2 9.9711 1.9929
Split, M = 4 10.025 1.9988
Split, M = 8 10.222 1.9998
Split, M = 16 11.063 1.9999
Split, M = 32 15.111 1.9999

Note. An absolute tolerance of 10−13 is used.
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These tables show that the rms errors for the thin and thick fronts are nearly identical. This
behavior is consistent with the above intuitive scaling.

These results suggest that, in the present setting, the global time step can be based
approximately on1t ∼ 16× 10−4δ2; accordingly the number of fractional diffusion steps
follows M ≡1t/1t ′ ∼ 16× 10−4δ2/(1x2/4)= 64× 10−4(δ/1x)2. This scaling is only
approximate, as a weak dependence on spatial resolution can be seen in Table I. Nonetheless,
it still suggests that, for a given front widthδ, M can be increased as the front resolution
is increased. Moreover, with the time scale for front propagationδt f = δ/c= δ2/2, the
above scaling translates to1t ∼ 0.0032δt f , such that the time step is a small fraction of the
physical time scale of the flow.

4.2.5. Summary Remarks

One should note that, since the stiff integration generally dominates the CPU time in
detailed kinetics applications, the selection of appropriate tolerance levels plays a crucial
role in the overall efficiency of the calculation. The experiences above provide approximate
but useful guidelines for the selection of both the integration step (or equivalently the number
of fractional diffusion steps) and the tolerance levels. In particular, the analysis shows that:

1. When the tolerance level is small, the operator-split, stiff scheme achieves second-
order convergence, as the overall temporal error is dominated by the operator-splitting and
explicit error contributions.

2. By increasing the number of fractional diffusion steps, and consequently the global
time step, the tolerances used in the stiff integrator can be accordingly increased.

3. When the tolerance levels are increased, the computed order of convergence of the
scheme may start decreasing. One can use this phenomenon as an initial guideline for the
selection of an adequate tolerance level, but this approach may yield an overly conservative
estimate. A more suitable approach for the selection of both the number of fractional steps
and the tolerance level is to monitor the behavior of the solution error, as the latter is often
dominated by the spatial error.

4. A simple guideline for selecting the number of fractional steps is that the global time
step should remain significantly smaller than the physical time scales of the problem. It also
appears that this initial guess can be made independently of the selected spatial resolution
level.

4.3. Alternative Splitting Procedures

We conclude this section with a brief discussion of two variants of the above splitting
procedure, as applied to the present simplified problem. In the first variant, the splitting is
performed in an alternating fashion, withM fractional diffusion steps followed by a stiff
fractional reaction step at odd time steps and a stiff fractional reaction step followed byM
fractional diffusion steps at even time steps. Following the notation above, this alternating
scheme is represented as

Un+1 =
{
DM
1t ′S1tUn, n even

S1tDM
1t ′U

n, n odd.
(60)

Thus, while the splitting is not symmetric within a single time step, symmetry is maintained
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FIG. 2. Spatial distribution of the error between the numerical and exact solutions for an alternating split
scheme with different values ofM . Results using an explicit non-split AB2 scheme are also plotted. The absolute
and relative tolerances used are 10−13 and 0, respectively. The computations are performed withδ= 1, Z= 20,
andN= 1000. The fractional diffusion step1t ′ = tc/2.

for a pair of consecutive steps. Accordingly, global second-order time convergence is still
expected.

To examine the behavior of the alternating scheme, computational tests were conducted
using the same approach followed above. A representative sample of the results is provided
in Fig. 2, which shows the spatial distribution of errors at the end of the calculation for a
front with δ= 1. For the same case, rms errors at the end of the calculations are reported
in Table V. Briefly, our experiences with the alternating scheme have been very similar
to those with the symmetric scheme. In particular, the results clearly show that second-
order temporal convergence can in fact be achieved. The general similarity between the
results of the alternating scheme (Fig. 2 and Table V) and the corresponding results of the
symmetric calculations (Fig. 1 and Table I) is also evident. However, one notes that while
the errors in the alternating and symmetric schemes are comparable at low1t , the errors
in the alternating scheme become noticeably higher as the time step increases. A related
observation is that the operator-split results start deviating from the AB2 predictions at

TABLE V

Root-Mean-Square Error and Order of Convergence

for Reacting Front Simulations with δ = 1, Z = 20, N =

1000, ∆x = 0.04, and∆t′ = 4× 10−4

Scheme rms error×106 Order of convergence

Split, M = 2 9.9967 1.9950
Split, M = 4 10.104 1.9991
Split, M = 8 10.538 1.9998
Split, M = 16 12.352 1.9996
Split, M = 32 20.524 1.9987

Note. An alternating split scheme with an absolute tolerance of 10−13

is used.
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FIG. 3. Spatial distribution of the error between the numerical and exact solutions for an asymmetric split
scheme with different values ofM . Results using an explicit non-split AB2 scheme are also plotted. The absolute
and relative tolerances used are 10−13 and 0, respectively. The computations are performed withδ= 1, Z= 20,
andN= 1000. The fractional diffusion step1t ′ = tc/2.

values ofM in the alternating scheme (Fig. 2) lower than those in the symmetric scheme
(Fig. 1). These trends can also be appreciated by comparing the results of Tables I and V,
especially at higher values of1t .

Finally, we consider an asymmetric split scheme in which integration of the diffusion
term is performed first, followed by stiff integration of the reaction term. Thus, the time
integration is expressed as

Un+1 = S1tDM
1t ′U

n. (61)

The asymmetric scheme is also applied to computing the steady propagation of a front
with δ= 1, and the results are used to analyze the temporal behavior of the computations.
Figure 3 shows the spatial distribution of errors at the end of the simulation; the correspond-
ing rms error values are reported in Table VI. The results clearly show that the asymmetric
split scheme is first order in time. In contrast with the results for the symmetric and alter-
nating schemes, the computations indicate that the (first-order) time-integration errors in

TABLE VI

Root-Mean-Square Error and Order of Convergence

for Reacting Front Simulations with δ = 1, Z = 20, N =

1000, ∆x = 0.04, and∆t′ = 4× 10−4

Scheme rms error×105 Order of convergence

Split, M = 2 3.9570 0.9994
Split, M = 4 8.0068 0.9990
Split, M = 8 16.188 0.9982
Split, M = 16 32.557 0.9966
Split, M = 32 65.166 0.9933

Note. An asymmetric split scheme is used with an absolute tol-
erance of 10−13.
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FIG. 4. Effect of the fractional diffusion step on the error for an asymmetric split scheme withM = 2.
The absolute and relative tolerances used are 10−13 and 0, respectively. The computations are performed with
δ= 1, Z= 20, andN= 1000.

the asymmetric scheme are dominant. Furthermore, for the same choice of discretization
parameters, Tables I, V, and VI show that the rms error in the asymmetric scheme is roughly
an order of magnitude larger than the errors in the symmetric and alternating constructions.

The first-order behavior of the asymmetric computations is also analyzed in Fig. 4 and
Table VII, which illustrate the effect of changing the time step at a fixed number of fractional
diffusion steps,M = 2. These computations show that in order to reduce the error of the
asymmetric calculations to levels comparable with those obtained with AB2, theglobal
time step value must fall significantly below the critical diffusion limit. Consequently, it
appears that for the present class of reaction–diffusion problems the asymmetric first-order
splitting can only provide computational advantages at the expense of a significant drop in
overall accuracy.

It should be emphasized that the above discussion ignores the CPU-time cost of the stiff
integration procedure, and its dependence on the associated step size. Thus, the optimization
of the parameters of the split, stiff scheme should not be simply based on the precision of
the calculations. This aspect will be further discussed in the following section, in the (more
practical) context of a detailed kinetics simulation.

TABLE VII

Effect of Time Step on the rms Error in Reacting Front Simulations

with δ = 1, Z = 20, N = 1000, and∆x = 0.04

Scheme 1t ′ = tc/2 1t ′ = tc/4 1t ′ = tc/8

Split, M = 2 3.9570× 10−5 2.0238× 10−5 1.2186× 10−5

Split, M = 4 8.0068× 10−5 3.9570× 10−5 2.023× 10−5

Split, M = 8 16.188× 10−5 8.0070× 10−5 3.9570× 10−5

Split, M = 16 32.557× 10−5 16.188× 10−5 8.0071× 10−5

Split, M = 32 65.166× 10−5 32.557× 10−5 16.188× 10−5

Note. An asymmetric split scheme with an absolute tolerance of 10−13 is used.
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5. APPLICATION TO FLAMES WITH DETAILED KINETICS

We now present results for both 1D and 2D flames using stiff detailed kinetics. The 1D
flame results are utilized to further examine the accuracy and convergence of the numerical
scheme, while the 2D flame serves to demonstrate the capabilities and efficiency of the
scheme. We use the GRImech1.2 [3] C1C2 chemical mechanism (32 species and 177 reac-
tions) for methane–air combustion, and consider a stoichiometric 20% N2-diluted premixed
methane–air flame at atmospheric pressure, with reactants at ambient temperature, in an
open domain.

5.1. 1D flame

A freely propagating premixed methane–air flame with the above composition and chem-
ical mechanism is computed using Chemkin [64, 76] in 1D. This solution is interpolated
onto a uniform 1D grid and used to initialize the computations. The initial flame structure
is shown in Fig. 5. The computational domain is 1.6 cm long with inflow and outflow
boundary conditions. Temperature and both reactant and product mole fractions are shown.
The flame burns to the left into the reactants, which flow from left to right, with an inlet
velocity of 19 cm/s at the left boundary, equal to the burning speed. The flow exhibits an
initial unsteady phase as the flame structure, position, and reaction rates adjust to the spatial
grid discretization and transport coefficients used in the present code, which are different
from those in Chemkin. The flow evolution is studied to evaluate the numerical scheme.

5.1.1. Convergence Rate

We begin by examining the empirically observed order of convergence of the scheme
in the global time step1t . We look at both self-convergence of the split scheme, and its
cross-convergence relative to the original non-split construction as1t is reduced. This uses
the rms measures, for any field quantityφ, at a given time,εself

1t =‖φsplit
1t − φsplit

1t/2‖, and

εcross
1t =‖φsplit

1t −φnon-split
1t ‖. The cross-convergence results, shown in Fig. 6, indicate that the

FIG. 5. One-dimensional stoichiometric 20% N2-diluted premixed methane–air flame structure. Ambient
temperature reactants are on the left, and hot combustion products are on the right. The GRImech1.2 [3] kinetic
mechanism is used to model flame chemistry. For clarity, intermediate species are not shown.
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FIG. 6. Convergence of the rms error between 1D flame solutions with successive global time-step refinements,
at t = 0.15 ms. The “error” reported here is the difference between the split and non-split scheme results. Absolute
and relative error tolerances in the stiff-integration procedure for both schemes are 10−8 and 10−14, respectively.
The split-scheme results are based onM = 16, andL = 4.

computed solutions with the two schemes converge at a rate that is indeed second order in
1t . Similarly, the self-convergence of the split scheme is found to beO(1t2).

5.1.2. Splitting Errors

In order to further examine the rms errors, we integrate the 1D flow using a range of
M ={2, 4, 8, 16, 32}, with a fixed1t = 50 ns,N= 512 cells over the domain length, and
with no viscous momentum splitting. The resulting computed solutions with the split scheme
are compared against the non-split results (integrated with the same1t). This is done for
DVODE relative tolerance threshold values ofR= 10−5, 10−6, and 10−8, for all scalars.
We also set the absolute tolerance threshold for each scalar quantityφ usingaφ =φmaxR,
whereφmax is the maximum value ofφ (φ > 0) over the computational domain. The relative
rms error results (normalized by the maximum value of each field quantity) are shown in
Fig. 7, using the velocity, temperature, and CH mole fraction fields for illustration. Note
first the negligible dependence of the error onM for all the fields shown. In fact, a small
drop in error with higherM can be observed (for theT field, for example), which may be
related to the reduction in theO(1t ′2) error in the integration of the diffusion terms, as
1t ′ =1t/M . Note that the flame thermal thickness is 0.069 cm, and the burning speed is
19 cm/s, resulting in a flame time scale oft f = 3.6 ms. Thus,1t/t f = 0.000014, a very
small fraction. It is not surprising therefore that the splitting errors are negligible, consistent
with the simplified analysis in the previous section (small splitting errors have also been
reported in [47]). On the other hand, the figure reveals strong dependence of the error on
R for the velocity and temperature fields. Even though the sameR is used for the split
and non-split solutions in each case, the stiff-integration errors do not cancel due to the
differences in the two time-integration schemes. Evidently, these errors are a significant
component of the overall time-integration errors in this case for thev andT fields, but not
for the CH mole fraction, whereR is seen to have no effect on the error.
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FIG. 7. Root-mean-square error results for the 1D detailed-chemistry flame. The flame is computed using
N= 512 grid cells on a 1.6 cm domain, with a global time step of1t = 50 ns and the indicated ranges of relative
tolerance thresholdR and number of scalar diffusion sub-stepsM . No splitting of the viscous momentum terms is
utilized. The error shown is the relative rms difference between the computed fields shown and those computed with
the same spatial resolution and time step but with no scalar-diffusion splitting (normalized with the maximum value
of each flow quantity). The error shows little dependence on the number of sub-steps, and significant dependence
on R.

Figure 8 illustrates the effect ofL, the number of viscous momentum sub-steps, on the
rms error. For all cases,1t = 50 ns andN= 512, as in Fig. 7. On the other hand, we
now vary1t ′′ with L ={2, 4, 8, 16, 32} and use a fixedM = 2. The relative rms error is
computed with respect to the non-split case with the same spatial resolution and global time
step. As in Fig. 7, we see the minor role of splitting errors relative to the stiff-integration
errors. This is clear from the effective independence of rms error onL. The dependence on
R is evident, however, and is similar to that observed in Fig. 7.

FIG. 8. Splitting errors and their dependence on the number of viscous momentum sub-stepsL. This is the
same fixed-1t 1D flame case as that in Fig. 7, but with fixedM = 2 andL varying over the range indicated. Here
again, the error shows little dependence on the number of sub-steps, and significant dependence onR.



454 KNIO, NAJM, AND WYCKOFF

FIG. 9. Root-mean-square error results for the 1D detailed-chemistry flame. The flame is computed using
N= 512 grid cells on a 1.6 cm domain, with a fixed scalar-diffusion sub-step of1t ′ = 50 ns, and the indicated
ranges of relative tolerance thresholdR and number of scalar-diffusion sub-stepsM . No splitting of the viscous
momentum terms is utiized. The error shown is the relative rms difference between the computed fields shown
and those computed with the same spatial resolution and time step but with no scalar-diffusion splitting. The
error shows strong second-order dependence on the number of sub-stepsM since1t =M1t ′. At low (M,1t),
R is found to have a significant effect on the error, as explicit time-integration errors become smaller than the
stiff-integration errors.

5.1.3. Temporal Discretization Errors and Stiff-Integration Tolerances

In Figs. 9 and 10 we allow1t to vary withM , while keeping1t ′ fixed, which is a more
realistic situation. In Fig. 9,1t ′ = 50 ns is large, such that we observe the second-order rise
of the errors (defined with respect to the non-split case) as(M,1t) are increased. We also
observe the role of stiff-integration tolerances which degrade the second-order behavior of

FIG. 10. Root-mean-square error results for the 1D detailed-chemistry flame. All conditions are similar to
those in Fig. 9, except that a smaller1t ′ = 5 ns, and associated1t =M1t ′, is used here. In the present case,
stiff-integration errors dominate the small-1t explicit integration errors. This is evidenced by the observed strong
role of R in modifying the rms error dependence on(M,1t).
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the error at low(M,1t), as observed in Section 4. As expected from the model problem
results, these effects are more pronounced in Fig. 10, with a smaller1t ′ = 5 ns and associated
smaller1t . The fixed stiff-integration tolerances limit the reduction in error significantly
at low(M,1t). Moreover, the uniformly observed second-order convergence rate in Fig. 9
is absent in Fig. 10. Only the CH mole fraction exhibits second-order convergence at large
M , while degrading at smallM for the high-R cases. ForR= 10−8 uniform second-order
convergence is evident in the CH data. Thev field convergence rate is seen to be much
more influenced by the stiff-integration tolerances, with lower error and better convergence
observed at lowR and high(M,1t). The temperature field, on the other hand, approaches
second-order convergence only for theR= 10−8 case atlow (M,1t). We also note, in
reference to the CH andT data at low(M,1t) in Fig. 10, that the two-orders-of-magnitude
change inR from 10−8 to 10−6 has a smaller influence on the rms error than the order-of-
magnitude change from 10−6 to 10−5. The corresponding changes in thev-data are of the
same order. Both observations suggest that the error is more sensitive to the stiff-integration
tolerance at large tolerance values. This makes sense, since the stiff-integration component
of the rms error is expected to be more significant at largeR. It is also consistent with the
similar experience in [42]. This observation is not evident however in Fig. 9, which may be
expected since the stiff-integration errors are not dominant in that case.

5.1.4. Spatial Discretization Errors

In Fig. 11, we report rms errors for fixed1t = 5 ns, between split solutions withN= 512
grid cells in the 1D domain, and non-split solutions withN= 2048 cells. The factor of 4
change in1x results in rms differences between the two computed solutions that include
spatial discretization errors. TheM = 1 data point in the figure corresponds to the non-split
N= 512 solution. The general level of the error in Fig. 11 is higher by roughly two orders
of magnitude than that in Fig. 7, despite the fact that the time step is smaller by a factor of
10. This increase is evidently due to the spatial discretization errors, which now seem to
dominate over the stiff-integration and splitting errors, as there is little observed dependence

FIG. 11. Root-mean-square errors corresponding to the sameN= 512 data in Fig. 7, but as compared to the
non-split solution usingN= 2048 albeit with the same1t . This comparison brings in the spatial discretization
errors, resulting in the observed general rise in the error as compared to Fig. 7, and the relative insensitivity toR,
resulting from the dominance of spatial errors over stiff-integration errors.
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FIG. 12. Root-mean-square errors for the 1D detailed-chemistry flame, comparing theN= 512, L = 0,M =
{0, 2, 4, 8, 16, 32},1t ′ = 5 ns case with the fine spatial resolution case usingN= 2048, L = 0,M = 0,
1t =1t ′ = 5 ns. Thus the rms error involves both spatial and temporal discretization errors, as in Fig. 11, al-
though here1t is increased withM . Note the relative insignificance ofM ,1t , or R on the amplitude of the error,
which is evidently dominated by spatial errors.

of the error on eitherM or R. This independence ofR due to dominance of spatial errors
is consistent with that observed in Section 4 above.

We also examine the spatial errors for fixed1t ′, and variable(M,1t). The data of
Fig. 10, with1t ′ = 5 ns andN= 512, are compared to the data of the non-split case with
N= 2048 and1t = 5 ns. The dependence of the resulting rms error onM , 1t , andR is
shown in Fig. 12. These results show that the significant dependence of the rms error on
R and(M,1t) observed in Fig. 10 is now entirely dominated by the spatial discretization
errors. Again, this independence ofR is consistent with the observations in Section 4 above.
On the other hand, Fig. 12 reveals a slight decrease in the rms error with(M,1t), in contrast
with the model problem results in Tables I and III. It is useful to recall, however, that the
interpretation of this error measure is complicated by the fact that it is the rms difference
between two fields, each of which has given truncation errors with respect to the exact
solution. Thus, the actual dependence of the resulting quantity on finite1t , M , L, R, and
1x is a complicated function whose behavior is only interesting insofar as the order of
the leading terms in the limit as(1x,1t) tends to zero. The data in Fig. 12 clearly show
the relatively insignificant effect of(M,1t) or R on this error in the presence of spatial
discretization errors.

We find similar error behavior in comparing theN= 1024 case against theN= 2048
case, as observed in Figs. 10 and 12, except that the roughly constant error levels observed
in Fig. 12 are lower by a factor of 1/4, given the 1/2-reduction in1x and the second-order
spatial discretization errors of the scheme. Thus, even theN= 1024 case is dominated by
spatial discretization errors, at least up toM = 32,1t = 160 ns, andR= 10−5.

5.1.5. Summary

The 1D flame problem thus exhibits several of the features observed in the above sim-
plified problem. The scheme is found to be second order in time when stiff-integration
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tolerances are small. When these tolerances are large, stiff-integration errors (which are
independent of1t) are large in relation to the explicit time-integration errors, and the
second-order convergence may not be observed. We also find that, for the present dis-
cretizations, the effect of splitting on the integration error is mostly exhibited through the
larger global1t , and not necessarily due to splitting per se. When the global1t is fixed,
neither M nor L has a significant effect on the error. Moreover, we have observed the
role of spatial discretization errors, which evidently dominate splitting, explicit, and stiff
time-integration errors for theN= 512 and 1024 cases.

5.2. 2D flame

Two-dimensional unsteady flame computations are very expensive, and thus do not allow
the above parametric studies. We present here some results from a single computation to
illustrate the performance and capabilities of the present construction. We consider the
interaction of the above premixed methane–air flame with a counter-rotating 2D vortex
pair. This is a typical flow that has been investigated both numerically [77, 69, 78, 79, 73,
80] and experimentally [81–86], and serves as a useful test problem.

5.2.1. Problem Specification

An open 2D rectangular domain is considered, with dimensions 0.4× 1.6 cm2, and is
overlaid by a 256× 1024 grid with uniform cell size (1x= 15.625µm) in each coordi-
nate direction. We apply symmetry boundary conditions in the horizontalx-direction, and
outflow boundary conditions in they-direction. The initial vorticity and temperature fields
at t = 0 are shown in the leftmost frame of Fig. 13. The vertical right edge of the domain
is the centerline of the vortex pair under consideration, which is one member of an in-
finite periodic row of vortex pairs along the horizontalx-direction. The initial condition

FIG. 13. Interaction of a counter-rotating vortex pair with a premixed stoichiometric 20% N2-diluted methane–
air flame using GRImech1.2 [3] over a time span of 6 ms. The shading indicates the temperature field, while
solid/dashed contours delineate positive/negative vorticity. The flame propagates downward into the ambient
reactants, while the vortex pair propagates upward by its self-induced velocity. Generation of a baroclinic vorticity
dipole is observed due to the misalignment of the vortex-pair-induced pressure field gradient and the flame density
gradient. The vortex pair contorts the flame in a manner that leads to the formation of a detached pocket of burning
reactants.
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is a superposition of the velocity (u, v) field induced by the periodic row of vortex pairs,
and the temperature, density, and mass fraction (T, ρ,Yi ) distributions corresponding to a
horizontal premixed flame, with the initial structure in they-direction from the 1D flame
shown in Fig. 5. The vorticity field corresponding to each initial vortex is a second-order
Gaussian. The vortex-pair structure evolves in time, approaching a vortex doublet, with
increased propagation speed. As a result, its self-induced translational velocity varies in the
range 0.5–2.0 m/s. The maximum rotational velocity in the domain is around 2 m/s, giving
a Mach number of 0.0067, a small value as required by the present formulation.

5.2.2. Flow Evolution

The results shown in Fig. 13 are computed using the operator-split stiff scheme, with
1t = 200 ns,M = 16, L = 2, R= 10−6. The flame is observed to propagate downward, in
the negativey direction, by burning into the reactants. The vorticity field causes significant
contortion and large variations in the topology of the flame as the vortex pair propagates
upward into it. A baroclinic vorticity dipole is generated in the neighborhood of the original
vortex, in agreement with the numerical results of [77, 69, 74, 87, 4] and the experimental
measurements of Muelleret al. [86]. The global dynamics of this flow involve penetration
of the fast vortex pair into the flame, and the formation of a pocket of unburnt material
carried through by the vortex pair. These dynamics reflect the relative disparity between
flame and vortex-pair time scales, the ratio of which yields a Damk¨ohler number Da= 0.4.
With Da< 1, the flow is faster than the flame, and it is expected that some contortion of the
flame will occur, as observed here.

We note that the strength of the present vortex pair and the ensuing flow time scale are 10
times smaller than those in [74] and the C1C2 data in [45]. As a consequence, the present
flame is subjected to stretch rates that are 10 times smaller; reduced flame contortion
is evident, and the rate of decay of the burning rate on the vortex-pair centerline flame
segment due to the unsteady strain environment is lower. The slower flow time scale is closer
to experimental conditions in [88, 85], and therefore allows improved comparisons to the
corresponding measurements. The present operator-split construction is crucial for enabling
the computation of this multi-millisecond flow–flame interaction given the requisite spatial
resolution and stiff kinetics.

5.2.3. Stability

The above flow and discretization parameters lead to the following CFL numbers,

λc = Umax1t

1x
= 0.0260

λv,M = Dmax1t

1x2
= 2.49, λ′v,M =

Dmax1t ′

1x2
= 0.156

λv,T = αmax1t

1x2
= 0.379, λ′v,T =

αmax1t ′

1x2
= 0.0237

λv,m = νmax1t

1x2
= 0.300, λ′′v,m =

νmax1t ′′

1x2
= 0.150,

whereUmax is the maximum(u, v) velocity in the domain, andDmax, αmax, andνmax are the
largest species’ diffusion coefficient, mixture thermal diffusivity, and kinematic viscosity
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values, respectively. The convective CFL numberλc is very small, well below unity. Thus,
from a stability standpoint, the limiting number in this flow is clearly the viscous-CFL
number in its various forms above. As indicated in Section 3.1.3, in the absence of opera-
tor splitting, experience with the non-split stiff scheme [4] suggests a diffusional stability
criterion ofλv < 0.25. Thus, in the absence of splitting, the aboveλv,M , λv,T , λv,m (viscous-
CFL numbers for mass, heat, and momentum) would be unstable, and the necessary max-
imum stable time step would be1t = 20 ns. In the present case,1t = 200 ns is 10 times
larger, leading to significant savings, as discussed below. The above split CFL numbers
(λ′v,M , λ

′
v,T , λ

′′
v,m) have been found to allow stable integration.

The critical diffusional CFL number for time integration of the above 2D flow with
M = 16 is found empirically to be roughly 0.17, significantly smaller than 0.25. In fact, for
the presentM and forL = 4(λ′v,m= 0.075), increasing1t to 240 ns (λ′v,M = 0.187) leads to
an unstable situation. Clearly, the stability limits of the operator-split scheme withM > 0
are different from those expected from the non-split, or split-M = 0, constructions. We find
that the 2D critical viscous CFL number, which is 0.25 for M = 0, decreases monotonically
with increasingM . One-dimensional tests suggest a limiting value corresponding to the
AB2-diffusional stability for largeM . This limit evidently becomes more significant as
more AB2-diffusional sub-steps are used with increasingM .

Despite this reduction in stable viscous CFL limits due to diffusional sub-stepping, the
factor of 10 increase in time step does lead to substantial computational savings. Of course,
the associated speedup is expected to be less than 10-fold due to various overheads associated
with the split scheme. These may be related both to the fractional time stepping for diffusion
and to the stiff time-integration procedure.

5.2.4. Stiff Integration and Operator Splitting

Typically, we have found that (for both the split and additive constructions) the stiff
ODE integration procedure in DVODE requires the most work, in terms of number of
function and Jacobian evaluations (F andJ ) as well as Newton iterations (N ), within the
flame structure, where reaction rates are large. In contrast, the least work is required in the
reactants. The observed maximum values ofF , J , andN in the computational domain
are listed in Table VIII for a range of values of(M,1t), for the 2D flame withR= 10−6.
These data indicate that the split scheme requires more work than the non-split scheme at the
same1t . This observation is consistent with earlier studies [48, 50, 40], where splitting the
diffusion and reaction operators was found to lead to large transients in the stiff-integration
phase of the scheme. These transients result in an increase of the startup cost of the ODE
stiff integrator in each time step, because the integrator would have to use smaller time steps
to resolve them accurately (given its specified error tolerances), which leads to increased
numbers of time steps, iterations, and both function and Jacobian evaluations. In fact, we do
observe that the minimum internal time step used by DVODE(1tmin) drops significantly
in the split versus the non-split scheme for constant1t = 20 ns, as seen in the table.

Moreover, there is a clear trend of increased work with increasing(M,1t). In fact,
increasing1t while maintainingM constant also leads to an increased stiff-integration
work requirement. This is not surprising since more integration steps and evaluations are
required to cover a larger time span for given error tolerance thresholds. Interestingly, the
table shows that increasing1t for constantM also leads to increased1tmin used by DVODE.
On the other hand, increasingM at constant1t for the split scheme does not lead to more
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TABLE VIII

Variation of Peak and Average Number of FunctionF , JacobianJ ,

and Newton IterationN calls with M and ∆t for the 2D flame, Using 10

Processors

1t 1tmin

M (ns) Fmax Jmax Nmax Favg Javg Navg (ns) Speedup

32 400 110 2 109 7.47 1.02 6.47 12.8 5.8

16 200 82 2 81 5.57 1.01 4.57 7.8 4.7

8 160 68 2 67 5.15 1.00 4.15 7.4 4.7
8 100 54 1 53 4.49 1 3.49 6.3
8 40 27 1 26 3.66 1 2.66 4.0

4 80 46 1 45 4.23 1 3.23 5.8 2.7
4 50 30 1 29 3.80 1 2.80 4.2
4 40 27 1 26 3.66 1 2.66 4.0

2 40 27 1 26 3.66 1 2.66 4.0 1.5
2 25 20 1 19 3.46 1 2.46 3.0
2 20 18 1 17 3.39 1 2.39 2.0

0 20 9 1 8 3.14 1 2.14 7.8 1.0

Note. Also shown are the minimum internal time step (1tmin) used by the stiff ODE
integrator, and selective speedup data relevant to the non-split case. All cases are with
L = 0, except for theM = 16, 32 cases whereL = 2, 4, respectively.

work, and does not affect1tmin, suggesting that the above stiff-integration startup transients
are not dependent on the number of diffusion sub-steps. We also note that the increased
work associated with large(M,1t) does not seem to be associated with any increase in
problem stiffness due to splitting, as the amplitude of the largest eigenvalue of the system
Jacobian is found to be unaffected by splitting or the number of diffusional sub-steps.

5.2.5. Load Balancing

It is important to point out, however, that the actual amount of work is not proportional
to the peakF ,J , andN , but rather to their averages over the domain, which—to the extent
that the flame occupies a fraction of the domain—clearly does increase with(M,1t) as
well, but in a lower proportion. The corresponding variation in averageF ,J , andN is also
shown in the table. As a consequence of this variable work load over the domain during the
integration of the chemical source terms, care is necessary to maintain load balancing among
the parallel processors. One option is to use an adaptive load balancing strategy. On the other
hand, we have found that a fine-grained non-contiguous distribution of computational cells
among the processors, which is efficiently done by the present shared-memory hardware
(SGI Origin2000), is well suited for maintaining load balancing. This would be highly
inefficient, however, on a distributed-memory machine, due to the resulting communication
overheads, in which case one is compelled to implement adaptive load balancing.

5.2.6. Scalability

Another overhead associated with increasingM is the work corresponding to the ex-
plicit integration of the diffusion terms. The computational effort required for diffusion
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can become of the same order as that of the stiff-integration procedure asM increases,
particularly if the evaluation of transport coefficients is expensive. Even in the present
work, where simple tabulated transport coefficients are used, in a 1D flame withM = 16,
R= 10−6, on an SGI Origin2000 machine with 10 R10K processors, the diffusion and re-
action time-integration processes require roughly comparable 30 and 50% of the CPU time.
Moreover, diffusion sub-stepping leads to reduced scalability on the present Non-uniform
Memory Access (NUMA) shared-memory implementation asM is increased. This is due
to the communication overhead associated with each of the consecutive (relatively non-
compute-intensive) individual diffusional fractional steps. In general, the increased ratio
of communication to computation is expected to lead to a reduction in scalability on both
NUMA and distributed-memory hardware.

5.2.7. Speedup

The result of the above overheads is a speedup factor of 5, for a 2D GRImech1.2 flame on
10 processors, withM = 16, L = 2, R= 10−6, and1t = 200 ns, against a similar non-split
implementation with1t = 20 ns, as seen in Table VIII. Further speedup, of about 6×, is
achieved withM = 32. However, the increasing overheads lead to diminishing return on
further increases inM . The speedup factor increases by 80% upon doubling(M,1t) from
(2, 40) to (4, 80). On the other hand, only 23% improvement is evident upon the doubling
from (16, 200) to (32, 400).

6. CONCLUSIONS

This work has focused on the development and implementation of an operator-split
numerical scheme for modeling flames in multi-dimensional unsteady flow with detailed
stiff chemical kinetics. The scheme was tested using a 1D nonlinear model problem and
both one- and two-dimensional flames with C1C2 kinetics. The construction was found to
be computationally efficient, stable, and second-order accurate.

The numerical construction builds on our earlier work involving an additive non-split
implicit–explicit scheme, where explicit diffusion and implicit reaction are integrated using
the same global time step. The present formulation splits the diffusion and reaction oper-
ators in the scalar conservation equations using symmetric second-order Strang splitting.
Each of the resulting diffusional half-steps is integrated using several sub-steps. Similarly,
sub-stepping is used for the viscous terms in the momentum equations. The performance
and accuracy of the scheme are governed by several parameters such as the global time
step, spatial cell size, fractional time steps for scalar and momentum diffusion, and the
stiff-integrator tolerances. We have outlined the relative roles of these parameters, and the
necessary choices for achieving optimal performance. Generally, we find spatial errors to
be dominant over time-integration errors for all cases considered. Time-integration errors
are a combination of (1) explicit time-integration errors, (2) operator-splitting errors, and
(3) stiff-integration errors. Operator-splitting errors were found to be relatively negligi-
ble, such that time accuracy is determined by a balance between the global time step and
the stiff-integration tolerances. When the global time step is very small, the overall time-
integration error is determined by the specified error thresholds used by the stiff integrator.
As a consequence, the second-order convergence rate of the scheme is not empirically ob-
servable. As the global time step (and number of diffusional sub-steps) is increased, explicit



462 KNIO, NAJM, AND WYCKOFF

time-integration errors dominate over stiff-integration errors, which are controlled accord-
ing to user-specified tolerances. When this occurs, the expected second-order convergence
rate of the scheme becomes evident.

We note that the observed dominance of spatial errors, even when the flame is well re-
solved, suggests that there is little reason to consider higher-order (>1t2) time-integration
constructions in the present context. In general, the utility of higher-order time-integration
schemes has to be evaluated based on a study of all errors inherent in the numerical con-
struction, and should not be a goal in and of itself. A related issue, which may be particularly
delicate in conjunction with split schemes, is that of boundary conditions. In the present
work, we have performed simulations in open domains only, and the tests have shown that
the split schemes are globally second order. In more complex situations discretization of
boundary conditions should be carefully assessed, especially when these conditions are
time-dependent.

Two-dimensional reacting flow results were also presented, illustrating the interaction of
a premixed methane–air flame with a counter-rotating vortex pair. A speedup factor of 5 was
demonstrated, relative to the non-split stiff scheme. This speedup allows the modeling of
relatively long flow–flame interaction times, in the range of 10–20 ms, on existing hardware.
We are thus able to study a wider range of flow time scales, and to compare with existing
experimental results utilizing relatively slow vortices. Similarly, more detailed chemical
mechanisms can be utilized, affording studies of heavier hydrocarbons and their role in
unsteady flame behavior.

The present experiences suggest that the performance of the scheme can be further en-
hanced in various ways. It may well be more efficient to use RK2 instead of AB2 in the
diffusional sub-steps, thereby increasing the critical viscous-CFL number when diffusional
sub-stepping is implemented. Similarly, other schemes with larger stability bounds can be
considered (see, e.g., [36, 89]). Moreover, the present construction uses the same number
of sub-steps for all species equations. This is in fact not necessary, as the most restrictive
diffusion stability constraint is due to the high diffusivity of H, while other species and
temperatures have a much lower diffusivity. A more optimal construction would use the
minimum number of sub-steps necessary for the stable integration of each species, thereby
reducing the diffusion time-integration effort. Given that the integration of diffusion terms
is in fact a significant fraction of total CPU time, this would lead to an appreciable overall
speedup of the scheme. Other approaches for improved efficiency are also under consid-
eration, such as the utilization of adaptive mesh refinement and the enhancement of the
stiff-integration efficiency by using an ODE integrator with reduced restart costs and ap-
proximate Jacobians.

APPENDIX: STIFF SPLIT CORRECTOR

In a stiff-corrector formulation of the split scheme, stepsS7andS8are substituted by the
following. As indicated earlier, this is not necessary, but is included here for completeness.

SA. The diffusion term is integrated inM ′ fractional steps of size1t ′. The procedure is
essentially identical toS2, except that the corrected convection source terms,C∗i andC∗ρ ,
are used in lieu ofCe

i andCe
ρ . Thus, the AB2 fractional steps are expressed as

(ρYi )
k+1− (ρYi )

k

1t ′
= 3

2
Dk

i −
1

2
Dk−1

i + 1

2
C∗i (62)
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ρk+1− ρk

1t ′
= 3

2

(
Dk
ρ − Ck

W,D

)− 1

2

(
Dk−1
ρ − Ck−1

W,D

)+ 1

2
S∗ρ (63)

Tk+1 = P0W̄k+1

ρk+1
. (64)

SB. The reaction source terms are integrated over a full time step1t , using as starting
values the computed scalar fields fromSA. We also account for half the corrected convection
source terms and symbolically express the integration as

(ρYi )
l+1− (ρYi )

l = S
∫
1t

[
Dawi (ρ, T,Y)+ 1

2
C∗i

]
dt (65)

ρl+1− ρl = S
∫
1t

[
− 1

cpT
DawT − CW,R+ 1

2
S∗ρ

]
dt (66)

Tl+1 = P0W̄l+1

ρl+1
. (67)

SC. The diffusion term is integrated inM ′ fractional steps of size1t ′. The procedure
is identical toSA, and the starting values are the scalar fields computed at the end of the
previous step.SC results in the fully updated scalar fields(ρn+1,Yn+1, Tn+1).
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